import argparse def get_argsparser(): """Parse commandline.""" parser = argparse.ArgumentParser(description="Bianbu AI Python Demo for Object Detection.") parser.add_argument("--image", "-i", type=str, required=True, help="input test image path") parser.add_argument("--model", "-m", type=str, required=True, help="input test model(*.onnx) path") parser.add_argument("--label", "-l", type=str, required=True, help="input test label path") parser.add_argument("--intra", type=int, default=2, help="intra thread number for backend(e.g. onnxruntime)") parser.add_argument("--inter", type=int, default=2, help="inter thread number for backend(e.g. onnxruntime)") return parser.parse_args() if __name__ == "__main__": args = get_argsparser() import cv2 from bianbuai import ObjectDetectionOption, ObjectDetectionTask option = ObjectDetectionOption() option.model_path = args.model option.label_path = args.label option.intra_threads_num = args.intra option.inter_threads_num = args.inter task = ObjectDetectionTask(option) outputs = task.Detect(cv2.imread(args.image)) for i, box in enumerate(outputs): print("bbox[%2d] x1y1x2y2: (%4d,%4d,%4d,%4d), score: %5.3f, label_text: %s" % (i, box.x1, box.y1, box.x2, box.y2, box.score, box.label_text))