# Perfect Numbers Welcome to Perfect Numbers on Exercism's C Track. If you need help running the tests or submitting your code, check out `HELP.md`. ## Instructions Determine if a number is perfect, abundant, or deficient based on Nicomachus' (60 - 120 CE) classification scheme for positive integers. The Greek mathematician [Nicomachus](https://en.wikipedia.org/wiki/Nicomachus) devised a classification scheme for positive integers, identifying each as belonging uniquely to the categories of **perfect**, **abundant**, or **deficient** based on their [aliquot sum](https://en.wikipedia.org/wiki/Aliquot_sum). The aliquot sum is defined as the sum of the factors of a number not including the number itself. For example, the aliquot sum of 15 is (1 + 3 + 5) = 9 - **Perfect**: aliquot sum = number - 6 is a perfect number because (1 + 2 + 3) = 6 - 28 is a perfect number because (1 + 2 + 4 + 7 + 14) = 28 - **Abundant**: aliquot sum > number - 12 is an abundant number because (1 + 2 + 3 + 4 + 6) = 16 - 24 is an abundant number because (1 + 2 + 3 + 4 + 6 + 8 + 12) = 36 - **Deficient**: aliquot sum < number - 8 is a deficient number because (1 + 2 + 4) = 7 - Prime numbers are deficient Implement a way to determine whether a given number is **perfect**. Depending on your language track, you may also need to implement a way to determine whether a given number is **abundant** or **deficient**. ## Source ### Created by - @deathsec ### Contributed to by - @bcc32 - @Gamecock - @h-3-0 - @patricksjackson - @QLaille - @ryanplusplus - @wolf99 ### Based on Taken from Chapter 2 of Functional Thinking by Neal Ford. - http://shop.oreilly.com/product/0636920029687.do