Tennis Ball Detection
PDR

Group 2 - Detect Inc.

Joe Demaria
Andrew Sealing
Connor Ott
Isaac Southwell
Blizzard Finnegan
Wesley Madden

Purpose

During tennis matches, some serves or returns land
near the boundary of the field-of-play. The high velocity
of the tennis ball makes accurate human
determinations of tennis ball position during bounce
impossible.

This PDR will detail how we intend to design and
implement a computer-vision object detection system
to determine the in-bounds validity of a tennis ball

bounce on a court.

Approach

° Capture still images of the tennis ball
° Produce motion of the tennis ball within frame from simulated or
black-box function
FPGA

° Process images of the tennis ball using image subtraction

Algorithm (Tennis Ball Calculations)
° Using processed images, determine centroid of the tennis ball
° Determine physical location in 3D space that corresponds with pixel
value
Communications Layer
° Create safe data transfer layers for image transfer and data display

Data Display

° Model X, Y, and Z coordinates of each serve on a 3D graph, determine
in bounds or out of bounds

Camera specifications

e 3840 x 2160 resolution could create images too
large to quickly process

e Distance from the court diminishes resolution of
the tennis ball

e Camera angle creates distortion around the
edges of the tennis court

Processing speed

e Large-format images will take longer to process
e Snickerdoodle may not be the best hardware

Major delays

e Issues with workflow or implementation
e Meeting due dates

Team Members and PDR Authority

Project Team

Team Member

Name
Joe Demaria
Connor Ott
Andrew Sealing
Blizzard Finnegan
Isaac Southwell

Wesley Madden

PDR Authority: Dr. Kaputa

Primary Role
Algorithm (Tennis Ball Calculations)
FPGA (Image Processing)
Unity (World Server)
Communications Layer / Data Visualization
Business

Unity (World Server)

Secondary Role
FPGA (Image Processing)
Algorithm (Tennis Ball Calculations)
FPGA (Image Processing)
Business
Communications Layer / Data Visualization

Float

Unity Tasks for PDR

Task Ref.
ID

Find suitable physical camera for virtualization.

Document each of the physical camera parameters -- focal length, resolution of output image, color space of output image, maximum frame

rate, etc.

Implement physical camera attributes in Unity for each of the two virtual cameras.

Determine most reasonable locations for each of the two cameras.

Document virtual camera position and angle relative to the center of the court and pass off to algorithm team.

Create a realistic test function that receives an input t, and moves the ball across the court by f(t) = t * some-x-value, where f{(t) should be the

entire length of the court when t = 2.

Verify test function can receive an input from MATLAB and ball follows motion. Verify images can be captured and saved with the tennis ball

in different positions for initial PDR requirement.

Affordable 4K Resolution
| WIFITransmission Swpport

4K 30FPS; 2.7K 30FPS
Video Resolution 1080P 120FPS; 1080P 60FPS
1080P 30FPS; 720P 240FPS
720P 60FPS; 720P 30FPS

Unity Camera Setup

(Z:-r;h:r' L (]‘:“E]' v #
Decided against stereo vision because of e

large pixel size at farther distances, which
would make height imprecise.

Briefly considered symmetrical setup with
cameras angled in from farther apart, but
perspective would have made it unnecessarily
difficult.

Now pretty much decided on top & side setup
as the most viable option to have the most
precision in all three directions.

Top & Side Cameras Concept

Hca m

Simulated Ball Movement

Scripted Ball movement in Unity
Including Physics to account for
drag, bounce, and friction

Can record vectors and position
before sending to algorithm to
cross check

Can use random vectors to

simulate back and forth match

FPGA Tasks for PDR

Feed a saved image into the FPGA using VDMA buffer.
Create VHDL IP for processing an image from RGB to grayscale.
Create VHDL IP for processing an image by XORing with a second frame.

Record the delta(t) of each of the possible image processing paths:
img -> rgb_to_grayscale -> XOR -> processed img
img -> XOR -> processed img

Showcase delta(t) values for each process as part of the initial PDR requirement. Showcase the final centroid pixel (or closest value).

Task Ref. ID

34

3:2

3.3

FPGA Demonstration

« 4 Figure3 = [m] X
File Edit View Insert Tools Desktop Window Help | File Edit View Inset Tools Desktop Window Help ¥
Neds | @0E8|KE NDeds | 08| KE

| < €
File Edit View Inset Tools Desktop Window Help

Dadse (/08| KE

Algorithm Tasks for PDR

: Task Ref.
Task
ID

Create test data that mimics what the FPGA will send out; i.e. X and Y positions across each of the two images, as well as diameter of the ball in
pixels. Test data should be manually created with saved images from Unity team.

From the left and right image TEST positional data, determine position of the tennis ball. Use the formulas from Lab2/3 .

From the left and right image positional data from the FPGA team, determine position of the tennis ball. Use the formulas from Lab2/3, and
possibly using Lab4.

For PDR: Showcase the test calculation for generating X and Y positional data from the pixel values. Showcase the real calculation using
positional output from the FPGA.

Algorithm Demonstration

Left -> Red Right -> Blue

Communications Layer Tasks for PDR

Communication Layer

Task Est. hrs Task Ref. ID
Prototype the transfer layer between Unity frame capture and the SoC. 8 251
Prototype loading image data into the VDMA buffer for FPGA access. 4 22
Prototype the REST API between the processor's calculated position data and the web visualization. 23

For PDR: Showcase some form of data transfer between Unity and the SoC

Communications Layer Demonstration

$ neofetch

Ubuntu 18.04.6 LTS aarches
+ Jetson-TX1
4.9.337-tegra
4 days, 21 hours, 7 mins
362

dmmmy
hdmnNNnmyNHHHHY
hm, - MMMMMMMNd dddy
MMM, hyyyy hnNHMMNh
N hNM

a
hhhyniy
Yk
p——,
hhhyNiNy yhiny
annin i -
AN, hyy yyheh
dn, MMM ddy
ft—"——"

yNHHHy.
hmanh

: 454miB / 3962MiB

$ tree -T target

Cargo.lock
cargo. toml

LICENSE

notes.nd

README .md
Fust-toolchain. tonl

L main.rs

1 directory, 7 files
Finished release [optinized] target(s) in 0.095
Running " target/release/comnunication-layer

2024-03-31T10:48:08.497641719-04:00 ~ [DEBUG, neli::socket] - Message sent

Ninsghdr { nl_ten Getroute, nl_flags: NInFFlags(FlagBuffer(1, Phantonbata<neli::consts

Rtmsg { rtn fanily: rtn_dst_len: 0, rtn_src_len: 0, rtm_tos: 0, rtn_table: Unspec, rtm protocol: Unspec, + Universe, rtm type: Unspec, rtm fla
REnFFlags (FlagBuf fer (4096, Phantomdata<neli::consts::rtnl::RtnF>)), rtattrs: RtBuffer([Rattr { rta_len: 8, Dst, rta payload: Buffer }1) }) }

, nelisisocket] - Message received: Nlmsghdr { nl_len: 112, nl_type: , nl_flags: NlnFFlags(Flaguffer(s,

+:NWnF>)), nl_seq: ©, nl pid: 31109, nl_payload: Payload(Rtmsg { rtm family: Inet, rtm dst len: 32, rtm src_len: 0, rtm tos: 0,

tn_table: Main, rtm_protocol: Unspec, rtm_scope: Universe, rtm_type: Unicast, rtm_flags: RtnFFlags(FlagBuffer(512, Phantombata<neli::consts: :rtnl::RtnF>)),
tattrs: RtBuffer([Rtattr { rta_len: 8, : Table, rta payload: Buffer }, Rtattr { rta len: 8, rta_type: Dst, rta payload: Buffer }, Rtattr { rta_len

, rta_type: Oif, rta_payload rta_len: 8, rta_type: Prefsrc, rta_payload: Buffer }, Rtattr { rta_len: 8, rta_type: Gateway, rta_payload

uffer }, Rtattr { rta_len: 8, rta_type: Uid, rta payload: Buffer }, Rtattr { rta_len: 36, rta_type: Cacheinfo, rta_payload: Buffer }1) }) }

2024-03.31T10:48:08.439497469-04:00 - [INFO, comunication_layer] - aggregating all IPs... This may take several minutes

[INFO, communication_layer] - Strean connected to address: Ok(192.168.0.228:55001)

[DEBUG, communication layer] - Begin handshake; sending timestamp float.

- [DEBUG, communication_layer] - Timestamp sent!

[DEBUG, communication layer] - Continue handshake, read back image packet length...

[DEBUG, communication layer] - Inage packet length read as 265420801

[DEBUG, communication_layer] ~ Continue handshake, read back image width

[DEBUG, communication layer] - Inage width read as 4096

[DEBUG, communication_layer] - Continue handshake, read back image height

[DEBUG, communication layer] - Inage height read as 21601

[DEBUG, communication layer] - Image bitdepth calculated as 3!

[INFO, communication_layer] - Start reading.

[INFO, communication layer] - Inage successfully recieved

[INFO, communication_layer] - Building inage..

[INFO, communication layer] - Inage built, saving to file...
2024-03-31T10:48:15.057251265-04:00 - [INFO, communication layer] - inage saved!

2 - tree -1 target

$ cargo run --release

nl::Nlnf>)), nl_seq: ©, nl_pid: 0, nl_payload: Payload(

et, o,

cargo. lock
cargo. toml

LICENSE

L 2024-03-31_10.48.l0g
notes.nd

README.md

Fust-toolchain. tonl

L main.rs

2 directories, 9 files
blue :

test.png

Format: PNG (Portable Network Graphics)

Mime type: image/png

Class: DirectClass

Geometry: 4096x2160+0+8
Undef ined

Type: TrueColor

Endianess: Undefined

Colorspace: sRGB

Depth: 8-bit

Channel depth:

Channel statistics:
Pixels: 8847360

5 (0.0196078)
(1)

mean: 93.021 (0.364788)
standard deviation: 49.2711 (0.19322)
kurtosis: 2.55342
skewness: 1.55200
entropy: 0.889555

6 (0.0235294)
(1)

mean: 99.7625 (0.391225)
standard deviation: 47.555 (0.18649)
kurtosis: 2.07596
skewness: 1.37919
entropy: 0.89616

Blue:
min: 3 (0.0117647)
max (1)

mean: 70.4025 (0.276088)

standard deviation: 51.5967 (0.20234)
kurtosis: 4.39133

skewness: 2.26241

entropy: 0.832237

Inage statistics

overall:
min: 3 (0.0117647)
255 (1)
mean: 87.7286 (0.344834)
standard deviation: 49.502 (0.194125)
kurtosis: 2.98899
skewness: 1.71264
entropy: 0.872651
Rendering intent: Perceptual
Gamma: 0.454545

(0.64,0.33)
(0.3,0.6)
(0.15,0.06)
(0.3127,0.329)
Background color: white
Border color: srgb(223,223,223)
Matte color: grey74
Transparent color:
Interlace: None
Intensity: Undefined
Compose: Over
Page geometry: 4096x2160+0+0
Dispose: Undefined
Iterations: 0
Compression: Zip
Orientation: Undefined

black

2024-03-31T11:07:27-04:00
date:modify: 2024-03-31T11:07:27-04:00

png: THOR.bit-depth-orig: 8
png:THDR.bit_depth

png: IHDR. color-type-orig: 2

png: IHDR. color_type: 2 (Truecolor)

png:IHDR. interlace_method: 0 (Not interlaced)
png:IHDR.width,height: 4096, 2160

png:sRGB: intent=0 (Perceptual Intent)

§ dentify -verbose test.pnoll

Data Visualization Tasks for PDR

Data Visualization

Task Ref.
Task
ID

Create test data for five samples -- each with an X, Y, and Z position. This can be done by running a t-value through the Unity team's test

function.
Create a simple webserver GUI that takes in arguments for X, Y, and Z position.

For PDR: Showcase a graph of each sample’s X,Y, and Z position on a 2.5D plot.

Data Visualization Demonstration

E Applications
B B Serving static files in Ex s
(¢ O D localhost
[Free Content [Misc Homelab @ OpenSCAD Cheatsheet

Express

Welcome to Express

¥ Icon For Hire | High qu

x Tri-surf plots

Scho! * 0 5 e
[IGPG @ Sumitomo HTR Enhan... 3 CarShopping 1 Career Connect @ Breath of the Wild Map @ megathread - Piracy. IR The Moon is Bright @ The Doctor Who Trans...
30 Line and Point Plot

" -
oo DU

#9 Express —Mozilla Firefox

Business Tasks for PDR

Business

Task
Create Gantt chart to track critical path and additional slack times.
Keep track of all hours and send weekly updates to all stakeholders.

Create a presentation to highlight each of the completion for PDR in each of the work categories.

For PDR: Create a presentation to highlight each of the PDR requirements and how they were met from each category.

Est. hrs

Task Ref. ID

6.1

6.2

6.3

6.4

Individual Cumulative hours worked Hours to PDR: Hours Completed
Isaac Southwell 12125 69.5

Blizzard Finnegan 13.07

Joe DeMaria 13.25

Connor Ott 16.5

Andrew Sealing dES

Wesley Madden CLID

[Total Hours | 75.32]

Real and Expected Burn Rate for PDR (4/1/2024)

== Real Hours == Expected Hours

75

50

25

3/3/2024 3/10/2024 3/17/2024 3/24/2024 3/31/2024

Labor Produced for PDR

;»:’“ ESD2 Groupwork

Organisation for CPET-563-01L3 (Embedded Systems Design Il) at Rochester Institute of Technology, semester 2235

2

1 |

 Repositories | 9 P Projects Q@ Packages A Members |5 A Teams (1

BN -

communication-layer @® Rust WO ¥ o
Library for communicating between the world server and the image processing layer
Updated 7 hours ago

data-display @ JavaScript WO 0
Library and server for visualising data calculated by the image processor.
Updated 2 days ago

business-docs Markdown %0 ¥ 0
Repository for project scope, pre- & post- dev product plan, and other misc business deliverables.
Updated 2 days ago

(Spring 2023). Contains all repositories necessary for the project, separated by language and function.

New Repository

Members

i 5 A

53

Follow

New Migration

Organized Repositories

Executive Summary

Final cost to meet PDR: $7,532 Estimated cost to meet PDR: $6,950

Hardware and Software decisions

Hours: Week 1 Hours: Week 2 Spring Break Hours: Week 3 Hours: Week 4

e Use of the Snickerdoodle over Jetson TX1
0.75 1425 0 4 125 . . . I .
— e = - v = e Discussions on FPGA implementation
0.75 1.25 5 55 4 e Google Sheets over Gantt chart
£25 125 0 3 215 e Plotly for data visualization
o7 12 0 o7 2 e (Camera positions
- - 1.5 3.5 3.75 p

From our own development, labor required from PDR to CDR is estimated
at 113 hours.

Immediate future for Group 2: Detect Inc.

Brainstorm and create CDR task list
Meet to determine dependencies in tasks
Record hours separate from PDR

Begin implementation work!

Estimated cost: $11,300

Total for PDR and CDR = $18,532

