// // aes.c // Modified based on ideas from https://github.com/m3y54m/aes-in-c.git and FIPS 197 // james.stine@okstate.edu 11 October 2024 // #include #include enum errorCode { SUCCESS = 0, ERROR_AES_UNKNOWN_KEYSIZE, ERROR_MEMORY_ALLOCATION_FAILED, }; // Implementation: S-Box (page 14 FIPS 197 Table 4) unsigned char sbox[256] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // A 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // B 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // C 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // D 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // E 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16}; // F // inverse S-box used in the InvSubBytes() (page 23 FIPS 197 Table 6) unsigned char rsbox[256] = // 0 1 2 3 4 5 6 7 8 9 A B C D E F {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, // 0 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, // 1 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, // 2 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, // 3 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, // 4 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, // 5 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, // 6 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, // 7 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, // 8 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, // 9 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, // A 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, // B 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, // C 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, // D 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, // E 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d}; // F // Implementation: Rcon (Round constants) - help introduce non-linearity and prevent symmetries // Rcon[i] = 0x02^(i-1) mod x^8 + x^4 + x^3 + x + 1 unsigned char Rcon[255] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb}; unsigned char getRconValue(unsigned char num); // Implementation: Key Expansion enum keySize { SIZE_16 = 16, SIZE_24 = 24, SIZE_32 = 32 }; // AES Encryption Function Prototypes void subBytes(unsigned char *state); void shiftRows(unsigned char *state); void shiftRow(unsigned char *state, unsigned char nbr); void addRoundKey(unsigned char *state, unsigned char *roundKey); unsigned char galois_multiplication(unsigned char a, unsigned char b); void mixColumns(unsigned char *state); void mixColumn(unsigned char *column); void aes_cipher(unsigned char *state, unsigned char *roundKey); void createRoundKey(unsigned char *expandedKey, unsigned char *roundKey); void aes_main(unsigned char *state, unsigned char *expandedKey, int nbrRounds); char aes_encrypt(unsigned char *input, unsigned char *output, unsigned char *key, enum keySize size); // AES Decryption Function Prototypes void invSubBytes(unsigned char *state); void invShiftRows(unsigned char *state); void invShiftRow(unsigned char *state, unsigned char nbr); void invMixColumns(unsigned char *state); void invMixColumn(unsigned char *column); void aes_invRound(unsigned char *state, unsigned char *roundKey); void aes_invCipher(unsigned char *state, unsigned char *expandedKey, int nbrRounds); char aes_decrypt(unsigned char *input, unsigned char *output, unsigned char *key, enum keySize size); // Helper function to print AES state void printState(const unsigned char *state) { for (int col = 0; col < 4; col++) { printf("%02x %02x %02x %02x ", state[col], state[col + 4], state[col + 8], state[col + 12]); } printf("\n"); } unsigned char getSBoxValue(unsigned char num) { return sbox[num]; } unsigned char getSBoxInvert(unsigned char num) { return rsbox[num]; } // left circular rotation (i.e., byte-wise rotate left) on a 4-byte word void rotate(unsigned char *word) { unsigned char temp = word[0]; word[0] = word[1]; word[1] = word[2]; word[2] = word[3]; word[3] = temp; } unsigned char getRconValue(unsigned char num) { return Rcon[num]; } void KeySchedule(unsigned char *word, int iteration) { int i; // Key Schedule: RotWord → SubWord → XOR with Rcon // used during key expansion to transform the input word before XORing it with a // word from earlier in the expanded key array. // rotate the 32-bit word 8 bits to the left rotate(word); // apply S-Box substitution on all 4 parts of the 32-bit word for (i = 0; i < 4; ++i) { word[i] = getSBoxValue(word[i]); } // XOR the output of the rcon operation with i to the first part (leftmost) only word[0] = word[0] ^ getRconValue(iteration); } // Rijndael's key expansion: expands an 128, 192, 256 key into an 176, 208, 240 bytes key void KeyExpansion(unsigned char *expandedKey, unsigned char *key, enum keySize size, size_t expandedKeySize) { // current expanded keySize, in bytes int currentSize = 0; int rconIteration = 1; int i; unsigned char t[4] = {0}; // temporary 4-byte variable // set the 16, 24,32 bytes of the expanded key to the input key for (i = 0; i < size; i++) expandedKey[i] = key[i]; currentSize += size; while (currentSize < expandedKeySize) { // assign the previous 4 bytes to the temporary value t for (i = 0; i < 4; i++) { t[i] = expandedKey[(currentSize - 4) + i]; } // every 16, 24, 32 bytes we apply the core schedule to t // and increment rconIteration afterwards if (currentSize % size == 0) { KeySchedule(t, rconIteration++); } // For 256-bit keys, we add an extra sbox to the calculation if (size == SIZE_32 && ((currentSize % size) == 16)) { for (i = 0; i < 4; i++) t[i] = getSBoxValue(t[i]); } // We XOR t with the four-byte block 16, 24, 32 bytes before the new expanded key. // This becomes the next four bytes in the expanded key. for (i = 0; i < 4; i++) { expandedKey[currentSize] = expandedKey[currentSize - size] ^ t[i]; currentSize++; } } } void subBytes(unsigned char *state) { for (int i = 0; i < 16; i++) { state[i] = getSBoxValue(state[i]); } } void shiftRows(unsigned char *state) { for (int row = 0; row < 4; row++) { shiftRow(state + row * 4, row); } } void shiftRow(unsigned char *state, unsigned char nbr) { unsigned char temp[4]; // Perform rotation directly for (int i = 0; i < 4; i++) { temp[i] = state[(i + nbr) % 4]; } // Copy result back to state for (int i = 0; i < 4; i++) { state[i] = temp[i]; } } void addRoundKey(unsigned char *state, unsigned char *roundKey) { int i; for (i = 0; i < 16; i++) state[i] = state[i] ^ roundKey[i]; } // Based on work by Tom St. Denis/Simon Johnson // https://www.amazon.com/Cryptography-Developers-Tom-St-Denis/dp/1597491047 unsigned char gfmul(unsigned char a, unsigned char b) { unsigned char p = 0; for (unsigned char counter = 0; counter < 8; counter++) { if (b & 1) p ^= a; a = (a << 1) ^ ((a & 0x80) ? 0x1b : 0); b >>= 1; } return p; } // Section 5.1.3 of FIPS 197 void mixColumns(unsigned char *state) { unsigned char column[4]; for (int col = 0; col < 4; col++) { // Extract the column from the state for (int row = 0; row < 4; row++) { column[row] = state[row * 4 + col]; } // Mix the column mixColumn(column); // Store the mixed column back into the state for (int row = 0; row < 4; row++) { state[row * 4 + col] = column[row]; } } } void mixColumn(unsigned char *column) { unsigned char a[4], b[4]; for (int i = 0; i < 4; i++) { a[i] = column[i]; b[i] = gfmul(column[i], 2); } column[0] = b[0] ^ a[3] ^ a[2] ^ gfmul(a[1], 3); column[1] = b[1] ^ a[0] ^ a[3] ^ gfmul(a[2], 3); column[2] = b[2] ^ a[1] ^ a[0] ^ gfmul(a[3], 3); column[3] = b[3] ^ a[2] ^ a[1] ^ gfmul(a[0], 3); } // The rounds in the specification of CIPHER() are composed of the following 4 byte-oriented // transformations on the state (Section 5.1 of FIPS 197) - outputs hex after each step void aes_cipher(unsigned char *state, unsigned char *roundKey) { subBytes(state); printState(state); shiftRows(state); printState(state); mixColumns(state); printState(state); addRoundKey(state, roundKey); printf("\n"); // Optional: for spacing } void createRoundKey(unsigned char *expandedKey, unsigned char *roundKey) { int i, j; // iterate over the columns for (i = 0; i < 4; i++) { // iterate over the rows for (j = 0; j < 4; j++) roundKey[(i + (j * 4))] = expandedKey[(i * 4) + j]; } } void aes_main(unsigned char *state, unsigned char *expandedKey, int nbrRounds) { unsigned char roundKey[16]; // Initial round key createRoundKey(expandedKey, roundKey); printState(state); printf("\n"); addRoundKey(state, roundKey); for (int i = 1; i < nbrRounds; i++) { createRoundKey(expandedKey + 16 * i, roundKey); printState(state); aes_cipher(state, roundKey); // includes printState calls inside if in debug mode } // Final round (no MixColumns) printState(state); createRoundKey(expandedKey + 16 * nbrRounds, roundKey); subBytes(state); printState(state); shiftRows(state); printState(state); addRoundKey(state, roundKey); printState(state); } char aes_encrypt(unsigned char *input, unsigned char *output, unsigned char *key, enum keySize size) { int nbrRounds; int expandedKeySize; unsigned char block[16]; unsigned char *expandedKey = NULL; // Determine number of rounds based on key size switch (size) { case SIZE_16: nbrRounds = 10; break; case SIZE_24: nbrRounds = 12; break; case SIZE_32: nbrRounds = 14; break; default: return ERROR_AES_UNKNOWN_KEYSIZE; } expandedKeySize = 16 * (nbrRounds + 1); expandedKey = (unsigned char *)malloc(expandedKeySize); if (expandedKey == NULL) { return ERROR_MEMORY_ALLOCATION_FAILED; } // Map input (row-major to column-major for AES) for (int row = 0; row < 4; row++) { for (int col = 0; col < 4; col++) { block[row + 4 * col] = input[4 * row + col]; } } // Expand the key KeyExpansion(expandedKey, key, size, expandedKeySize); // Encrypt the block aes_main(block, expandedKey, nbrRounds); // Map block back to output (column-major to row-major) for (int row = 0; row < 4; row++) { for (int col = 0; col < 4; col++) { output[4 * row + col] = block[row + 4 * col]; } } // de-allocate memory for expandedKey free(expandedKey); return SUCCESS; } void invSubBytes(unsigned char *state) { for (int i = 0; i < 16; i++) { state[i] = getSBoxInvert(state[i]); } } void invShiftRows(unsigned char *state) { for (int row = 0; row < 4; row++) { invShiftRow(state + row * 4, row); } } void invShiftRow(unsigned char *state, unsigned char nbr) { unsigned char temp[4]; // Perform rotation to the right by `nbr` positions for (int i = 0; i < 4; i++) { temp[i] = state[(i - nbr + 4) % 4]; } // Copy back the rotated values for (int i = 0; i < 4; i++) { state[i] = temp[i]; } } void invMixColumns(unsigned char *state) { unsigned char column[4]; for (int col = 0; col < 4; col++) { // Extract one column (4 bytes from each row) for (int row = 0; row < 4; row++) { column[row] = state[row * 4 + col]; } // Apply inverse MixColumn transformation invMixColumn(column); // Store transformed column back into the state for (int row = 0; row < 4; row++) { state[row * 4 + col] = column[row]; } } } void invMixColumn(unsigned char *column) { unsigned char a[4]; for (int i = 0; i < 4; i++) a[i] = column[i]; unsigned char a0_14 = gfmul(a[0], 14); unsigned char a1_11 = gfmul(a[1], 11); unsigned char a2_13 = gfmul(a[2], 13); unsigned char a3_9 = gfmul(a[3], 9); unsigned char a0_9 = gfmul(a[0], 9); unsigned char a1_14 = gfmul(a[1], 14); unsigned char a2_11 = gfmul(a[2], 11); unsigned char a3_13 = gfmul(a[3], 13); unsigned char a0_13 = gfmul(a[0], 13); unsigned char a1_9 = gfmul(a[1], 9); unsigned char a2_14 = gfmul(a[2], 14); unsigned char a3_11 = gfmul(a[3], 11); unsigned char a0_11 = gfmul(a[0], 11); unsigned char a1_13 = gfmul(a[1], 13); unsigned char a2_9 = gfmul(a[2], 9); unsigned char a3_14 = gfmul(a[3], 14); column[0] = a0_14 ^ a1_11 ^ a2_13 ^ a3_9; column[1] = a0_9 ^ a1_14 ^ a2_11 ^ a3_13; column[2] = a0_13 ^ a1_9 ^ a2_14 ^ a3_11; column[3] = a0_11 ^ a1_13 ^ a2_9 ^ a3_14; } void aes_invRound(unsigned char *state, unsigned char *roundKey) { invShiftRows(state); invSubBytes(state); addRoundKey(state, roundKey); invMixColumns(state); } void aes_invCipher(unsigned char *state, unsigned char *expandedKey, int nbrRounds) { unsigned char roundKey[16]; // Initial round key for final round createRoundKey(expandedKey + 16 * nbrRounds, roundKey); addRoundKey(state, roundKey); // Inverse rounds (excluding final round) for (int round = nbrRounds - 1; round > 0; round--) { createRoundKey(expandedKey + 16 * round, roundKey); aes_invRound(state, roundKey); } // Final inverse round (no invMixColumns) createRoundKey(expandedKey, roundKey); invShiftRows(state); invSubBytes(state); addRoundKey(state, roundKey); } char aes_decrypt(unsigned char *input, unsigned char *output, unsigned char *key, enum keySize size) { int nbrRounds; int expandedKeySize; unsigned char block[16]; unsigned char *expandedKey = NULL; // Determine the number of rounds based on key size switch (size) { case SIZE_16: nbrRounds = 10; break; case SIZE_24: nbrRounds = 12; break; case SIZE_32: nbrRounds = 14; break; default: return ERROR_AES_UNKNOWN_KEYSIZE; } expandedKeySize = 16 * (nbrRounds + 1); expandedKey = (unsigned char *)malloc(expandedKeySize); if (expandedKey == NULL) { return ERROR_MEMORY_ALLOCATION_FAILED; } // Transpose input (column-major block for AES) for (int row = 0; row < 4; row++) { for (int col = 0; col < 4; col++) { block[row + 4 * col] = input[4 * row + col]; } } // Key expansion KeyExpansion(expandedKey, key, size, expandedKeySize); // Decrypt aes_invCipher(block, expandedKey, nbrRounds); // Transpose back into output (row-major) for (int row = 0; row < 4; row++) { for (int col = 0; col < 4; col++) { output[4 * row + col] = block[row + 4 * col]; } } // de-allocate memory for expandedKey free(expandedKey); return SUCCESS; } int main(int argc, char *argv[]) { // Rounds: Number of AES rounds // Words/Key: Number of 32-bit words per round key (Nb = 4 for AES) // Round Keys: Total words in expanded key = Nb × (Rounds + 1) // KeyExp (B): Key expansion size in bytes = Round Keys × 4 // Block (B): Block size in bytes = 128 bits / 8 = 16 //+-----------+ Block Size | Rounds | Words/Key | Round Keys | KeyExp (B) | Block (B) | //|-----------|------------|--------|-----------|------------|------------|-----------| //| AES-128 | 128 bits | 10 | 4 | 44 | 176 | 16 | //| AES-192 | 128 bits | 12 | 4 | 52 | 208 | 16 | //| AES-256 | 128 bits | 14 | 4 | 60 | 240 | 16 | //+-----------+------------+--------+-----------+------------+------------+-----------+ // the expanded keySize to store full set of round keys int expandedKeySize = 240; unsigned char expandedKey[expandedKeySize]; // the cipher key (FIPS 197 example (page 28) 128-bit Cipher Key in Appendix A) //unsigned char key[16] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, // 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c}; // (FIPS 197 example (page 34) in Appendix B) // AES uses an internal structure called the state, which is a 4x4 byte matrix (16 bytes total). // AES operates on 128-bit blocks (16 bytes), always — regardless of key size (128, 192, 256). //unsigned char plaintext[16] = {0x32, 0x43, 0xf6, 0xa8, 0x88, 0x5a, 0x30, 0x8d, // 0x31, 0x31, 0x98, 0xa2, 0xe0, 0x37, 0x07, 0x34}; // the cipher key size defined on Line 86 enum keySize size = SIZE_32; // These examples are in Appendix C of FIPS 197 starting on page 35 (2001 version) // AES 128-bit key and plaintext input unsigned char key[16] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }; unsigned char plaintext[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }; // AES-192 key and plaintext input unsigned char key192[24] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 }; unsigned char plaintext192[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }; // AES-256 key and plaintext input unsigned char key256[32] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }; unsigned char plaintext256[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }; // the ciphertext unsigned char ciphertext[16]; // the decrypted text unsigned char decryptedtext[16]; int i; printf("Implementation of the AES algorithm in C\n"); printf("\nCipher Key (hex format):\n"); for (i = 0; i < 16; i++) { // Print characters in hex format, 16 chars per line printf("%2.2x%c", key[i], ((i + 1) % 16) ? ' ' : '\n'); } // Test the Key Expansion KeyExpansion(expandedKey, key, size, expandedKeySize); printf("\nExpanded Key (hex format):\n"); for (i = 0; i < expandedKeySize; i++) { printf("%2.2x%c", expandedKey[i], ((i + 1) % 16) ? ' ' : '\n'); } printf("\nPlaintext (hex format):\n"); for (i = 0; i < 16; i++) { printf("%2.2x%c", plaintext[i], ((i + 1) % 16) ? ' ' : '\n'); } // AES Encryption aes_encrypt(plaintext, ciphertext, key, SIZE_32); printf("\nCiphertext (hex format):\n"); for (i = 0; i < 16; i++) { printf("%02x%c", ciphertext[i], ((i + 1) % 16) ? ' ' : '\n'); } // AES Decryption aes_decrypt(ciphertext, decryptedtext, key, SIZE_32); printf("\nDecrypted text (hex format):\n"); for (i = 0; i < 16; i++) { printf("%2.2x%c", decryptedtext[i], ((i + 1) % 16) ? ' ' : '\n'); } return 0; }