diff --git a/benchmarks/src/main/java/org/elasticsearch/benchmark/vector/Int4ScorerBenchmark.java b/benchmarks/src/main/java/org/elasticsearch/benchmark/vector/Int4ScorerBenchmark.java
new file mode 100644
index 000000000000..e104aa85cccb
--- /dev/null
+++ b/benchmarks/src/main/java/org/elasticsearch/benchmark/vector/Int4ScorerBenchmark.java
@@ -0,0 +1,123 @@
+/*
+ * Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
+ * or more contributor license agreements. Licensed under the "Elastic License
+ * 2.0", the "GNU Affero General Public License v3.0 only", and the "Server Side
+ * Public License v 1"; you may not use this file except in compliance with, at
+ * your election, the "Elastic License 2.0", the "GNU Affero General Public
+ * License v3.0 only", or the "Server Side Public License, v 1".
+ */
+package org.elasticsearch.benchmark.vector;
+
+import org.apache.lucene.store.Directory;
+import org.apache.lucene.store.IOContext;
+import org.apache.lucene.store.IndexInput;
+import org.apache.lucene.store.IndexOutput;
+import org.apache.lucene.store.MMapDirectory;
+import org.apache.lucene.util.VectorUtil;
+import org.elasticsearch.common.logging.LogConfigurator;
+import org.elasticsearch.core.IOUtils;
+import org.elasticsearch.simdvec.ES91Int4VectorsScorer;
+import org.elasticsearch.simdvec.internal.vectorization.ESVectorizationProvider;
+import org.openjdk.jmh.annotations.Benchmark;
+import org.openjdk.jmh.annotations.BenchmarkMode;
+import org.openjdk.jmh.annotations.Fork;
+import org.openjdk.jmh.annotations.Measurement;
+import org.openjdk.jmh.annotations.Mode;
+import org.openjdk.jmh.annotations.OutputTimeUnit;
+import org.openjdk.jmh.annotations.Param;
+import org.openjdk.jmh.annotations.Scope;
+import org.openjdk.jmh.annotations.Setup;
+import org.openjdk.jmh.annotations.State;
+import org.openjdk.jmh.annotations.TearDown;
+import org.openjdk.jmh.annotations.Warmup;
+import org.openjdk.jmh.infra.Blackhole;
+
+import java.io.IOException;
+import java.nio.file.Files;
+import java.util.concurrent.ThreadLocalRandom;
+import java.util.concurrent.TimeUnit;
+
+@BenchmarkMode(Mode.Throughput)
+@OutputTimeUnit(TimeUnit.MILLISECONDS)
+@State(Scope.Benchmark)
+// first iteration is complete garbage, so make sure we really warmup
+@Warmup(iterations = 4, time = 1)
+// real iterations. not useful to spend tons of time here, better to fork more
+@Measurement(iterations = 5, time = 1)
+// engage some noise reduction
+@Fork(value = 1)
+public class Int4ScorerBenchmark {
+
+ static {
+ LogConfigurator.configureESLogging(); // native access requires logging to be initialized
+ }
+
+ @Param({ "384", "702", "1024" })
+ int dims;
+
+ int numVectors = 200;
+ int numQueries = 10;
+
+ byte[] scratch;
+ byte[][] binaryVectors;
+ byte[][] binaryQueries;
+
+ ES91Int4VectorsScorer scorer;
+ Directory dir;
+ IndexInput in;
+
+ @Setup
+ public void setup() throws IOException {
+ binaryVectors = new byte[numVectors][dims];
+ dir = new MMapDirectory(Files.createTempDirectory("vectorData"));
+ try (IndexOutput out = dir.createOutput("vectors", IOContext.DEFAULT)) {
+ for (byte[] binaryVector : binaryVectors) {
+ for (int i = 0; i < dims; i++) {
+ // 4-bit quantization
+ binaryVector[i] = (byte) ThreadLocalRandom.current().nextInt(16);
+ }
+ out.writeBytes(binaryVector, 0, binaryVector.length);
+ }
+ }
+
+ in = dir.openInput("vectors", IOContext.DEFAULT);
+ binaryQueries = new byte[numVectors][dims];
+ for (byte[] binaryVector : binaryVectors) {
+ for (int i = 0; i < dims; i++) {
+ // 4-bit quantization
+ binaryVector[i] = (byte) ThreadLocalRandom.current().nextInt(16);
+ }
+ }
+
+ scratch = new byte[dims];
+ scorer = ESVectorizationProvider.getInstance().newES91Int4VectorsScorer(in, dims);
+ }
+
+ @TearDown
+ public void teardown() throws IOException {
+ IOUtils.close(dir, in);
+ }
+
+ @Benchmark
+ @Fork(jvmArgsPrepend = { "--add-modules=jdk.incubator.vector" })
+ public void scoreFromArray(Blackhole bh) throws IOException {
+ for (int j = 0; j < numQueries; j++) {
+ in.seek(0);
+ for (int i = 0; i < numVectors; i++) {
+ in.readBytes(scratch, 0, dims);
+ bh.consume(VectorUtil.int4DotProduct(binaryQueries[j], scratch));
+ }
+ }
+ }
+
+ @Benchmark
+ @Fork(jvmArgsPrepend = { "--add-modules=jdk.incubator.vector" })
+ public void scoreFromMemorySegmentOnlyVector(Blackhole bh) throws IOException {
+ for (int j = 0; j < numQueries; j++) {
+ in.seek(0);
+ for (int i = 0; i < numVectors; i++) {
+ bh.consume(scorer.int4DotProduct(binaryQueries[j]));
+ }
+ }
+ }
+}
diff --git a/libs/simdvec/src/main/java/org/elasticsearch/simdvec/ES91Int4VectorsScorer.java b/libs/simdvec/src/main/java/org/elasticsearch/simdvec/ES91Int4VectorsScorer.java
new file mode 100644
index 000000000000..803bdd523a6b
--- /dev/null
+++ b/libs/simdvec/src/main/java/org/elasticsearch/simdvec/ES91Int4VectorsScorer.java
@@ -0,0 +1,43 @@
+/*
+ * Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
+ * or more contributor license agreements. Licensed under the "Elastic License
+ * 2.0", the "GNU Affero General Public License v3.0 only", and the "Server Side
+ * Public License v 1"; you may not use this file except in compliance with, at
+ * your election, the "Elastic License 2.0", the "GNU Affero General Public
+ * License v3.0 only", or the "Server Side Public License, v 1".
+ */
+package org.elasticsearch.simdvec;
+
+import org.apache.lucene.store.IndexInput;
+
+import java.io.IOException;
+
+/** Scorer for quantized vectors stored as an {@link IndexInput}.
+ *
+ * Similar to {@link org.apache.lucene.util.VectorUtil#int4DotProduct(byte[], byte[])} but
+ * one value is read directly from an {@link IndexInput}.
+ *
+ * */
+public class ES91Int4VectorsScorer {
+
+ /** The wrapper {@link IndexInput}. */
+ protected final IndexInput in;
+ protected final int dimensions;
+ protected byte[] scratch;
+
+ /** Sole constructor, called by sub-classes. */
+ public ES91Int4VectorsScorer(IndexInput in, int dimensions) {
+ this.in = in;
+ this.dimensions = dimensions;
+ scratch = new byte[dimensions];
+ }
+
+ public long int4DotProduct(byte[] b) throws IOException {
+ in.readBytes(scratch, 0, dimensions);
+ int total = 0;
+ for (int i = 0; i < dimensions; i++) {
+ total += scratch[i] * b[i];
+ }
+ return total;
+ }
+}
diff --git a/libs/simdvec/src/main/java/org/elasticsearch/simdvec/ESVectorUtil.java b/libs/simdvec/src/main/java/org/elasticsearch/simdvec/ESVectorUtil.java
index 5778c26e16e5..6671ed5084a8 100644
--- a/libs/simdvec/src/main/java/org/elasticsearch/simdvec/ESVectorUtil.java
+++ b/libs/simdvec/src/main/java/org/elasticsearch/simdvec/ESVectorUtil.java
@@ -47,6 +47,10 @@ public class ESVectorUtil {
return ESVectorizationProvider.getInstance().newES91OSQVectorsScorer(input, dimension);
}
+ public static ES91Int4VectorsScorer getES91Int4VectorsScorer(IndexInput input, int dimension) throws IOException {
+ return ESVectorizationProvider.getInstance().newES91Int4VectorsScorer(input, dimension);
+ }
+
public static long ipByteBinByte(byte[] q, byte[] d) {
if (q.length != d.length * B_QUERY) {
throw new IllegalArgumentException("vector dimensions incompatible: " + q.length + "!= " + B_QUERY + " x " + d.length);
diff --git a/libs/simdvec/src/main/java/org/elasticsearch/simdvec/internal/vectorization/DefaultESVectorizationProvider.java b/libs/simdvec/src/main/java/org/elasticsearch/simdvec/internal/vectorization/DefaultESVectorizationProvider.java
index 51a78d3cd6c3..5bdd7a724ced 100644
--- a/libs/simdvec/src/main/java/org/elasticsearch/simdvec/internal/vectorization/DefaultESVectorizationProvider.java
+++ b/libs/simdvec/src/main/java/org/elasticsearch/simdvec/internal/vectorization/DefaultESVectorizationProvider.java
@@ -10,6 +10,7 @@
package org.elasticsearch.simdvec.internal.vectorization;
import org.apache.lucene.store.IndexInput;
+import org.elasticsearch.simdvec.ES91Int4VectorsScorer;
import org.elasticsearch.simdvec.ES91OSQVectorsScorer;
import java.io.IOException;
@@ -30,4 +31,9 @@ final class DefaultESVectorizationProvider extends ESVectorizationProvider {
public ES91OSQVectorsScorer newES91OSQVectorsScorer(IndexInput input, int dimension) throws IOException {
return new ES91OSQVectorsScorer(input, dimension);
}
+
+ @Override
+ public ES91Int4VectorsScorer newES91Int4VectorsScorer(IndexInput input, int dimension) throws IOException {
+ return new ES91Int4VectorsScorer(input, dimension);
+ }
}
diff --git a/libs/simdvec/src/main/java/org/elasticsearch/simdvec/internal/vectorization/ESVectorizationProvider.java b/libs/simdvec/src/main/java/org/elasticsearch/simdvec/internal/vectorization/ESVectorizationProvider.java
index 8c040484c7c0..719284f48471 100644
--- a/libs/simdvec/src/main/java/org/elasticsearch/simdvec/internal/vectorization/ESVectorizationProvider.java
+++ b/libs/simdvec/src/main/java/org/elasticsearch/simdvec/internal/vectorization/ESVectorizationProvider.java
@@ -10,6 +10,7 @@
package org.elasticsearch.simdvec.internal.vectorization;
import org.apache.lucene.store.IndexInput;
+import org.elasticsearch.simdvec.ES91Int4VectorsScorer;
import org.elasticsearch.simdvec.ES91OSQVectorsScorer;
import java.io.IOException;
@@ -31,6 +32,9 @@ public abstract class ESVectorizationProvider {
/** Create a new {@link ES91OSQVectorsScorer} for the given {@link IndexInput}. */
public abstract ES91OSQVectorsScorer newES91OSQVectorsScorer(IndexInput input, int dimension) throws IOException;
+ /** Create a new {@link ES91Int4VectorsScorer} for the given {@link IndexInput}. */
+ public abstract ES91Int4VectorsScorer newES91Int4VectorsScorer(IndexInput input, int dimension) throws IOException;
+
// visible for tests
static ESVectorizationProvider lookup(boolean testMode) {
return new DefaultESVectorizationProvider();
diff --git a/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/ESVectorizationProvider.java b/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/ESVectorizationProvider.java
index ea4180b59565..4708a052b05d 100644
--- a/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/ESVectorizationProvider.java
+++ b/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/ESVectorizationProvider.java
@@ -13,6 +13,7 @@ import org.apache.lucene.store.IndexInput;
import org.apache.lucene.util.Constants;
import org.elasticsearch.logging.LogManager;
import org.elasticsearch.logging.Logger;
+import org.elasticsearch.simdvec.ES91Int4VectorsScorer;
import org.elasticsearch.simdvec.ES91OSQVectorsScorer;
import java.io.IOException;
@@ -38,6 +39,9 @@ public abstract class ESVectorizationProvider {
/** Create a new {@link ES91OSQVectorsScorer} for the given {@link IndexInput}. */
public abstract ES91OSQVectorsScorer newES91OSQVectorsScorer(IndexInput input, int dimension) throws IOException;
+ /** Create a new {@link ES91Int4VectorsScorer} for the given {@link IndexInput}. */
+ public abstract ES91Int4VectorsScorer newES91Int4VectorsScorer(IndexInput input, int dimension) throws IOException;
+
// visible for tests
static ESVectorizationProvider lookup(boolean testMode) {
final int runtimeVersion = Runtime.version().feature();
diff --git a/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/MemorySegmentES91Int4VectorsScorer.java b/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/MemorySegmentES91Int4VectorsScorer.java
new file mode 100644
index 000000000000..9a314fc4c18e
--- /dev/null
+++ b/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/MemorySegmentES91Int4VectorsScorer.java
@@ -0,0 +1,191 @@
+/*
+ * Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
+ * or more contributor license agreements. Licensed under the "Elastic License
+ * 2.0", the "GNU Affero General Public License v3.0 only", and the "Server Side
+ * Public License v 1"; you may not use this file except in compliance with, at
+ * your election, the "Elastic License 2.0", the "GNU Affero General Public
+ * License v3.0 only", or the "Server Side Public License, v 1".
+ */
+package org.elasticsearch.simdvec.internal.vectorization;
+
+import jdk.incubator.vector.ByteVector;
+import jdk.incubator.vector.IntVector;
+import jdk.incubator.vector.ShortVector;
+import jdk.incubator.vector.Vector;
+import jdk.incubator.vector.VectorSpecies;
+
+import org.apache.lucene.store.IndexInput;
+import org.elasticsearch.simdvec.ES91Int4VectorsScorer;
+
+import java.io.IOException;
+import java.lang.foreign.MemorySegment;
+
+import static java.nio.ByteOrder.LITTLE_ENDIAN;
+import static jdk.incubator.vector.VectorOperators.ADD;
+import static jdk.incubator.vector.VectorOperators.B2I;
+import static jdk.incubator.vector.VectorOperators.B2S;
+import static jdk.incubator.vector.VectorOperators.S2I;
+
+/** Panamized scorer for quantized vectors stored as an {@link IndexInput}.
+ *
+ * Similar to {@link org.apache.lucene.util.VectorUtil#int4DotProduct(byte[], byte[])} but
+ * one value is read directly from a {@link MemorySegment}.
+ * */
+public final class MemorySegmentES91Int4VectorsScorer extends ES91Int4VectorsScorer {
+
+ private static final VectorSpecies BYTE_SPECIES_64 = ByteVector.SPECIES_64;
+ private static final VectorSpecies BYTE_SPECIES_128 = ByteVector.SPECIES_128;
+
+ private static final VectorSpecies SHORT_SPECIES_128 = ShortVector.SPECIES_128;
+ private static final VectorSpecies SHORT_SPECIES_256 = ShortVector.SPECIES_256;
+
+ private static final VectorSpecies INT_SPECIES_128 = IntVector.SPECIES_128;
+ private static final VectorSpecies INT_SPECIES_256 = IntVector.SPECIES_256;
+ private static final VectorSpecies INT_SPECIES_512 = IntVector.SPECIES_512;
+
+ private final MemorySegment memorySegment;
+
+ public MemorySegmentES91Int4VectorsScorer(IndexInput in, int dimensions, MemorySegment memorySegment) {
+ super(in, dimensions);
+ this.memorySegment = memorySegment;
+ }
+
+ @Override
+ public long int4DotProduct(byte[] q) throws IOException {
+ if (PanamaESVectorUtilSupport.VECTOR_BITSIZE >= 512 || PanamaESVectorUtilSupport.VECTOR_BITSIZE == 256) {
+ return dotProduct(q);
+ }
+ int i = 0;
+ int res = 0;
+ if (dimensions >= 32 && PanamaESVectorUtilSupport.HAS_FAST_INTEGER_VECTORS) {
+ i += BYTE_SPECIES_128.loopBound(dimensions);
+ res += int4DotProductBody128(q, i);
+ }
+ in.readBytes(scratch, i, dimensions - i);
+ while (i < dimensions) {
+ res += scratch[i] * q[i++];
+ }
+ return res;
+ }
+
+ private int int4DotProductBody128(byte[] q, int limit) throws IOException {
+ int sum = 0;
+ long offset = in.getFilePointer();
+ for (int i = 0; i < limit; i += 1024) {
+ ShortVector acc0 = ShortVector.zero(SHORT_SPECIES_128);
+ ShortVector acc1 = ShortVector.zero(SHORT_SPECIES_128);
+ int innerLimit = Math.min(limit - i, 1024);
+ for (int j = 0; j < innerLimit; j += BYTE_SPECIES_128.length()) {
+ ByteVector va8 = ByteVector.fromArray(BYTE_SPECIES_64, q, i + j);
+ ByteVector vb8 = ByteVector.fromMemorySegment(BYTE_SPECIES_64, memorySegment, offset + i + j, LITTLE_ENDIAN);
+ ByteVector prod8 = va8.mul(vb8);
+ ShortVector prod16 = prod8.convertShape(B2S, ShortVector.SPECIES_128, 0).reinterpretAsShorts();
+ acc0 = acc0.add(prod16.and((short) 255));
+ va8 = ByteVector.fromArray(BYTE_SPECIES_64, q, i + j + 8);
+ vb8 = ByteVector.fromMemorySegment(BYTE_SPECIES_64, memorySegment, offset + i + j + 8, LITTLE_ENDIAN);
+ prod8 = va8.mul(vb8);
+ prod16 = prod8.convertShape(B2S, SHORT_SPECIES_128, 0).reinterpretAsShorts();
+ acc1 = acc1.add(prod16.and((short) 255));
+ }
+
+ IntVector intAcc0 = acc0.convertShape(S2I, INT_SPECIES_128, 0).reinterpretAsInts();
+ IntVector intAcc1 = acc0.convertShape(S2I, INT_SPECIES_128, 1).reinterpretAsInts();
+ IntVector intAcc2 = acc1.convertShape(S2I, INT_SPECIES_128, 0).reinterpretAsInts();
+ IntVector intAcc3 = acc1.convertShape(S2I, INT_SPECIES_128, 1).reinterpretAsInts();
+ sum += intAcc0.add(intAcc1).add(intAcc2).add(intAcc3).reduceLanes(ADD);
+ }
+ in.seek(offset + limit);
+ return sum;
+ }
+
+ private long dotProduct(byte[] q) throws IOException {
+ int i = 0;
+ int res = 0;
+
+ // only vectorize if we'll at least enter the loop a single time, and we have at least 128-bit
+ // vectors (256-bit on intel to dodge performance landmines)
+ if (dimensions >= 16 && PanamaESVectorUtilSupport.HAS_FAST_INTEGER_VECTORS) {
+ // compute vectorized dot product consistent with VPDPBUSD instruction
+ if (PanamaESVectorUtilSupport.VECTOR_BITSIZE >= 512) {
+ i += BYTE_SPECIES_128.loopBound(dimensions);
+ res += dotProductBody512(q, i);
+ } else if (PanamaESVectorUtilSupport.VECTOR_BITSIZE == 256) {
+ i += BYTE_SPECIES_64.loopBound(dimensions);
+ res += dotProductBody256(q, i);
+ } else {
+ // tricky: we don't have SPECIES_32, so we workaround with "overlapping read"
+ i += BYTE_SPECIES_64.loopBound(dimensions - BYTE_SPECIES_64.length());
+ res += dotProductBody128(q, i);
+ }
+ }
+ // scalar tail
+ for (; i < q.length; i++) {
+ res += in.readByte() * q[i];
+ }
+ return res;
+ }
+
+ /** vectorized dot product body (512 bit vectors) */
+ private int dotProductBody512(byte[] q, int limit) throws IOException {
+ IntVector acc = IntVector.zero(INT_SPECIES_512);
+ long offset = in.getFilePointer();
+ for (int i = 0; i < limit; i += BYTE_SPECIES_128.length()) {
+ ByteVector va8 = ByteVector.fromArray(BYTE_SPECIES_128, q, i);
+ ByteVector vb8 = ByteVector.fromMemorySegment(BYTE_SPECIES_128, memorySegment, offset + i, LITTLE_ENDIAN);
+
+ // 16-bit multiply: avoid AVX-512 heavy multiply on zmm
+ Vector va16 = va8.convertShape(B2S, SHORT_SPECIES_256, 0);
+ Vector vb16 = vb8.convertShape(B2S, SHORT_SPECIES_256, 0);
+ Vector prod16 = va16.mul(vb16);
+
+ // 32-bit add
+ Vector prod32 = prod16.convertShape(S2I, INT_SPECIES_512, 0);
+ acc = acc.add(prod32);
+ }
+
+ in.seek(offset + limit); // advance the input stream
+ // reduce
+ return acc.reduceLanes(ADD);
+ }
+
+ /** vectorized dot product body (256 bit vectors) */
+ private int dotProductBody256(byte[] q, int limit) throws IOException {
+ IntVector acc = IntVector.zero(INT_SPECIES_256);
+ long offset = in.getFilePointer();
+ for (int i = 0; i < limit; i += BYTE_SPECIES_64.length()) {
+ ByteVector va8 = ByteVector.fromArray(BYTE_SPECIES_64, q, i);
+ ByteVector vb8 = ByteVector.fromMemorySegment(BYTE_SPECIES_64, memorySegment, offset + i, LITTLE_ENDIAN);
+
+ // 32-bit multiply and add into accumulator
+ Vector va32 = va8.convertShape(B2I, INT_SPECIES_256, 0);
+ Vector vb32 = vb8.convertShape(B2I, INT_SPECIES_256, 0);
+ acc = acc.add(va32.mul(vb32));
+ }
+ in.seek(offset + limit);
+ // reduce
+ return acc.reduceLanes(ADD);
+ }
+
+ /** vectorized dot product body (128 bit vectors) */
+ private int dotProductBody128(byte[] q, int limit) throws IOException {
+ IntVector acc = IntVector.zero(INT_SPECIES_128);
+ long offset = in.getFilePointer();
+ // 4 bytes at a time (re-loading half the vector each time!)
+ for (int i = 0; i < limit; i += BYTE_SPECIES_64.length() >> 1) {
+ // load 8 bytes
+ ByteVector va8 = ByteVector.fromArray(BYTE_SPECIES_64, q, i);
+ ByteVector vb8 = ByteVector.fromMemorySegment(BYTE_SPECIES_64, memorySegment, offset + i, LITTLE_ENDIAN);
+
+ // process first "half" only: 16-bit multiply
+ Vector va16 = va8.convert(B2S, 0);
+ Vector vb16 = vb8.convert(B2S, 0);
+ Vector prod16 = va16.mul(vb16);
+
+ // 32-bit add
+ acc = acc.add(prod16.convertShape(S2I, INT_SPECIES_128, 0));
+ }
+ in.seek(offset + limit);
+ // reduce
+ return acc.reduceLanes(ADD);
+ }
+}
diff --git a/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/PanamaESVectorizationProvider.java b/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/PanamaESVectorizationProvider.java
index 5ff8c19c90a5..abb75352da2f 100644
--- a/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/PanamaESVectorizationProvider.java
+++ b/libs/simdvec/src/main21/java/org/elasticsearch/simdvec/internal/vectorization/PanamaESVectorizationProvider.java
@@ -11,6 +11,7 @@ package org.elasticsearch.simdvec.internal.vectorization;
import org.apache.lucene.store.IndexInput;
import org.apache.lucene.store.MemorySegmentAccessInput;
+import org.elasticsearch.simdvec.ES91Int4VectorsScorer;
import org.elasticsearch.simdvec.ES91OSQVectorsScorer;
import java.io.IOException;
@@ -39,4 +40,15 @@ final class PanamaESVectorizationProvider extends ESVectorizationProvider {
}
return new ES91OSQVectorsScorer(input, dimension);
}
+
+ @Override
+ public ES91Int4VectorsScorer newES91Int4VectorsScorer(IndexInput input, int dimension) throws IOException {
+ if (PanamaESVectorUtilSupport.HAS_FAST_INTEGER_VECTORS && input instanceof MemorySegmentAccessInput msai) {
+ MemorySegment ms = msai.segmentSliceOrNull(0, input.length());
+ if (ms != null) {
+ return new MemorySegmentES91Int4VectorsScorer(input, dimension, ms);
+ }
+ }
+ return new ES91Int4VectorsScorer(input, dimension);
+ }
}
diff --git a/libs/simdvec/src/test/java/org/elasticsearch/simdvec/internal/vectorization/ES91Int4VectorScorerTests.java b/libs/simdvec/src/test/java/org/elasticsearch/simdvec/internal/vectorization/ES91Int4VectorScorerTests.java
new file mode 100644
index 000000000000..c19211585a76
--- /dev/null
+++ b/libs/simdvec/src/test/java/org/elasticsearch/simdvec/internal/vectorization/ES91Int4VectorScorerTests.java
@@ -0,0 +1,60 @@
+/*
+ * Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one
+ * or more contributor license agreements. Licensed under the "Elastic License
+ * 2.0", the "GNU Affero General Public License v3.0 only", and the "Server Side
+ * Public License v 1"; you may not use this file except in compliance with, at
+ * your election, the "Elastic License 2.0", the "GNU Affero General Public
+ * License v3.0 only", or the "Server Side Public License, v 1".
+ */
+
+package org.elasticsearch.simdvec.internal.vectorization;
+
+import org.apache.lucene.store.Directory;
+import org.apache.lucene.store.IOContext;
+import org.apache.lucene.store.IndexInput;
+import org.apache.lucene.store.IndexOutput;
+import org.apache.lucene.store.MMapDirectory;
+import org.apache.lucene.util.VectorUtil;
+import org.elasticsearch.simdvec.ES91Int4VectorsScorer;
+
+public class ES91Int4VectorScorerTests extends BaseVectorizationTests {
+
+ public void testInt4DotProduct() throws Exception {
+ // only even dimensions are supported
+ final int dimensions = random().nextInt(1, 1000) * 2;
+ final int numVectors = random().nextInt(1, 100);
+ final byte[] vector = new byte[dimensions];
+ try (Directory dir = new MMapDirectory(createTempDir())) {
+ try (IndexOutput out = dir.createOutput("tests.bin", IOContext.DEFAULT)) {
+ for (int i = 0; i < numVectors; i++) {
+ for (int j = 0; j < dimensions; j++) {
+ vector[j] = (byte) random().nextInt(16); // 4-bit quantization
+ }
+ out.writeBytes(vector, 0, dimensions);
+ }
+ }
+ final byte[] query = new byte[dimensions];
+ for (int j = 0; j < dimensions; j++) {
+ query[j] = (byte) random().nextInt(16); // 4-bit quantization
+ }
+ try (IndexInput in = dir.openInput("tests.bin", IOContext.DEFAULT)) {
+ // Work on a slice that has just the right number of bytes to make the test fail with an
+ // index-out-of-bounds in case the implementation reads more than the allowed number of
+ // padding bytes.
+ final IndexInput slice = in.slice("test", 0, (long) dimensions * numVectors);
+ final IndexInput slice2 = in.slice("test2", 0, (long) dimensions * numVectors);
+ final ES91Int4VectorsScorer defaultScorer = defaultProvider().newES91Int4VectorsScorer(slice, dimensions);
+ final ES91Int4VectorsScorer panamaScorer = maybePanamaProvider().newES91Int4VectorsScorer(slice2, dimensions);
+ for (int i = 0; i < numVectors; i++) {
+ in.readBytes(vector, 0, dimensions);
+ long val = VectorUtil.int4DotProduct(vector, query);
+ assertEquals(val, defaultScorer.int4DotProduct(query));
+ assertEquals(val, panamaScorer.int4DotProduct(query));
+ assertEquals(in.getFilePointer(), slice.getFilePointer());
+ assertEquals(in.getFilePointer(), slice2.getFilePointer());
+ }
+ assertEquals((long) dimensions * numVectors, in.getFilePointer());
+ }
+ }
+ }
+}
diff --git a/server/src/main/java/org/elasticsearch/index/codec/vectors/DefaultIVFVectorsReader.java b/server/src/main/java/org/elasticsearch/index/codec/vectors/DefaultIVFVectorsReader.java
index 5c86f602a654..e7b41d005d7e 100644
--- a/server/src/main/java/org/elasticsearch/index/codec/vectors/DefaultIVFVectorsReader.java
+++ b/server/src/main/java/org/elasticsearch/index/codec/vectors/DefaultIVFVectorsReader.java
@@ -19,6 +19,7 @@ import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.VectorUtil;
import org.apache.lucene.util.hnsw.NeighborQueue;
import org.elasticsearch.index.codec.vectors.reflect.OffHeapStats;
+import org.elasticsearch.simdvec.ES91Int4VectorsScorer;
import org.elasticsearch.simdvec.ES91OSQVectorsScorer;
import org.elasticsearch.simdvec.ESVectorUtil;
@@ -48,25 +49,23 @@ public class DefaultIVFVectorsReader extends IVFVectorsReader implements OffHeap
@Override
CentroidQueryScorer getCentroidScorer(FieldInfo fieldInfo, int numCentroids, IndexInput centroids, float[] targetQuery)
throws IOException {
- FieldEntry fieldEntry = fields.get(fieldInfo.number);
- float[] globalCentroid = fieldEntry.globalCentroid();
- float globalCentroidDp = fieldEntry.globalCentroidDp();
- OptimizedScalarQuantizer scalarQuantizer = new OptimizedScalarQuantizer(fieldInfo.getVectorSimilarityFunction());
- byte[] quantized = new byte[targetQuery.length];
- float[] targetScratch = ArrayUtil.copyArray(targetQuery);
- OptimizedScalarQuantizer.QuantizationResult queryParams = scalarQuantizer.scalarQuantize(
- targetScratch,
+ final FieldEntry fieldEntry = fields.get(fieldInfo.number);
+ final float globalCentroidDp = fieldEntry.globalCentroidDp();
+ final OptimizedScalarQuantizer scalarQuantizer = new OptimizedScalarQuantizer(fieldInfo.getVectorSimilarityFunction());
+ final byte[] quantized = new byte[targetQuery.length];
+ final OptimizedScalarQuantizer.QuantizationResult queryParams = scalarQuantizer.scalarQuantize(
+ ArrayUtil.copyArray(targetQuery),
quantized,
(byte) 4,
- globalCentroid
+ fieldEntry.globalCentroid()
);
+ final ES91Int4VectorsScorer scorer = ESVectorUtil.getES91Int4VectorsScorer(centroids, fieldInfo.getVectorDimension());
return new CentroidQueryScorer() {
int currentCentroid = -1;
- private final byte[] quantizedCentroid = new byte[fieldInfo.getVectorDimension()];
private final float[] centroid = new float[fieldInfo.getVectorDimension()];
private final float[] centroidCorrectiveValues = new float[3];
- private int quantizedCentroidComponentSum;
- private final long centroidByteSize = fieldInfo.getVectorDimension() + 3 * Float.BYTES + Short.BYTES;
+ private final long rawCentroidsOffset = (long) numCentroids * (fieldInfo.getVectorDimension() + 3 * Float.BYTES + Short.BYTES);
+ private final long rawCentroidsByteSize = (long) Float.BYTES * fieldInfo.getVectorDimension();
@Override
public int size() {
@@ -75,35 +74,67 @@ public class DefaultIVFVectorsReader extends IVFVectorsReader implements OffHeap
@Override
public float[] centroid(int centroidOrdinal) throws IOException {
- readQuantizedAndRawCentroid(centroidOrdinal);
+ if (centroidOrdinal != currentCentroid) {
+ centroids.seek(rawCentroidsOffset + rawCentroidsByteSize * centroidOrdinal);
+ centroids.readFloats(centroid, 0, centroid.length);
+ currentCentroid = centroidOrdinal;
+ }
return centroid;
}
- private void readQuantizedAndRawCentroid(int centroidOrdinal) throws IOException {
- if (centroidOrdinal == currentCentroid) {
- return;
+ public void bulkScore(NeighborQueue queue) throws IOException {
+ // TODO: bulk score centroids like we do with posting lists
+ centroids.seek(0L);
+ for (int i = 0; i < numCentroids; i++) {
+ queue.add(i, score());
}
- centroids.seek(centroidOrdinal * centroidByteSize);
- quantizedCentroidComponentSum = readQuantizedValue(centroids, quantizedCentroid, centroidCorrectiveValues);
- centroids.seek(numCentroids * centroidByteSize + (long) Float.BYTES * quantizedCentroid.length * centroidOrdinal);
- centroids.readFloats(centroid, 0, centroid.length);
- currentCentroid = centroidOrdinal;
}
- @Override
- public float score(int centroidOrdinal) throws IOException {
- readQuantizedAndRawCentroid(centroidOrdinal);
+ private float score() throws IOException {
+ final float qcDist = scorer.int4DotProduct(quantized);
+ centroids.readFloats(centroidCorrectiveValues, 0, 3);
+ final int quantizedCentroidComponentSum = Short.toUnsignedInt(centroids.readShort());
return int4QuantizedScore(
- quantized,
+ qcDist,
queryParams,
fieldInfo.getVectorDimension(),
- quantizedCentroid,
centroidCorrectiveValues,
quantizedCentroidComponentSum,
globalCentroidDp,
fieldInfo.getVectorSimilarityFunction()
);
}
+
+ // TODO can we do this in off-heap blocks?
+ private float int4QuantizedScore(
+ float qcDist,
+ OptimizedScalarQuantizer.QuantizationResult queryCorrections,
+ int dims,
+ float[] targetCorrections,
+ int targetComponentSum,
+ float centroidDp,
+ VectorSimilarityFunction similarityFunction
+ ) {
+ float ax = targetCorrections[0];
+ // Here we assume `lx` is simply bit vectors, so the scaling isn't necessary
+ float lx = (targetCorrections[1] - ax) * FOUR_BIT_SCALE;
+ float ay = queryCorrections.lowerInterval();
+ float ly = (queryCorrections.upperInterval() - ay) * FOUR_BIT_SCALE;
+ float y1 = queryCorrections.quantizedComponentSum();
+ float score = ax * ay * dims + ay * lx * (float) targetComponentSum + ax * ly * y1 + lx * ly * qcDist;
+ if (similarityFunction == EUCLIDEAN) {
+ score = queryCorrections.additionalCorrection() + targetCorrections[2] - 2 * score;
+ return Math.max(1 / (1f + score), 0);
+ } else {
+ // For cosine and max inner product, we need to apply the additional correction, which is
+ // assumed to be the non-centered dot-product between the vector and the centroid
+ score += queryCorrections.additionalCorrection() + targetCorrections[2] - centroidDp;
+ if (similarityFunction == MAXIMUM_INNER_PRODUCT) {
+ return VectorUtil.scaleMaxInnerProductScore(score);
+ }
+ return Math.max((1f + score) / 2f, 0);
+ }
+ }
};
}
@@ -111,10 +142,7 @@ public class DefaultIVFVectorsReader extends IVFVectorsReader implements OffHeap
NeighborQueue scorePostingLists(FieldInfo fieldInfo, KnnCollector knnCollector, CentroidQueryScorer centroidQueryScorer, int nProbe)
throws IOException {
NeighborQueue neighborQueue = new NeighborQueue(centroidQueryScorer.size(), true);
- // TODO Off heap scoring for quantized centroids?
- for (int centroid = 0; centroid < centroidQueryScorer.size(); centroid++) {
- neighborQueue.add(centroid, centroidQueryScorer.score(centroid));
- }
+ centroidQueryScorer.bulkScore(neighborQueue);
return neighborQueue;
}
@@ -125,39 +153,6 @@ public class DefaultIVFVectorsReader extends IVFVectorsReader implements OffHeap
return new MemorySegmentPostingsVisitor(target, indexInput.clone(), entry, fieldInfo, needsScoring);
}
- // TODO can we do this in off-heap blocks?
- static float int4QuantizedScore(
- byte[] quantizedQuery,
- OptimizedScalarQuantizer.QuantizationResult queryCorrections,
- int dims,
- byte[] binaryCode,
- float[] targetCorrections,
- int targetComponentSum,
- float centroidDp,
- VectorSimilarityFunction similarityFunction
- ) {
- float qcDist = VectorUtil.int4DotProduct(quantizedQuery, binaryCode);
- float ax = targetCorrections[0];
- // Here we assume `lx` is simply bit vectors, so the scaling isn't necessary
- float lx = (targetCorrections[1] - ax) * FOUR_BIT_SCALE;
- float ay = queryCorrections.lowerInterval();
- float ly = (queryCorrections.upperInterval() - ay) * FOUR_BIT_SCALE;
- float y1 = queryCorrections.quantizedComponentSum();
- float score = ax * ay * dims + ay * lx * (float) targetComponentSum + ax * ly * y1 + lx * ly * qcDist;
- if (similarityFunction == EUCLIDEAN) {
- score = queryCorrections.additionalCorrection() + targetCorrections[2] - 2 * score;
- return Math.max(1 / (1f + score), 0);
- } else {
- // For cosine and max inner product, we need to apply the additional correction, which is
- // assumed to be the non-centered dot-product between the vector and the centroid
- score += queryCorrections.additionalCorrection() + targetCorrections[2] - centroidDp;
- if (similarityFunction == MAXIMUM_INNER_PRODUCT) {
- return VectorUtil.scaleMaxInnerProductScore(score);
- }
- return Math.max((1f + score) / 2f, 0);
- }
- }
-
@Override
public Map getOffHeapByteSize(FieldInfo fieldInfo) {
return Map.of();
@@ -356,12 +351,4 @@ public class DefaultIVFVectorsReader extends IVFVectorsReader implements OffHeap
}
}
- static int readQuantizedValue(IndexInput indexInput, byte[] binaryValue, float[] corrections) throws IOException {
- assert corrections.length == 3;
- indexInput.readBytes(binaryValue, 0, binaryValue.length);
- corrections[0] = Float.intBitsToFloat(indexInput.readInt());
- corrections[1] = Float.intBitsToFloat(indexInput.readInt());
- corrections[2] = Float.intBitsToFloat(indexInput.readInt());
- return Short.toUnsignedInt(indexInput.readShort());
- }
}
diff --git a/server/src/main/java/org/elasticsearch/index/codec/vectors/IVFVectorsReader.java b/server/src/main/java/org/elasticsearch/index/codec/vectors/IVFVectorsReader.java
index 453780466478..dbcdfd451df9 100644
--- a/server/src/main/java/org/elasticsearch/index/codec/vectors/IVFVectorsReader.java
+++ b/server/src/main/java/org/elasticsearch/index/codec/vectors/IVFVectorsReader.java
@@ -332,7 +332,7 @@ public abstract class IVFVectorsReader extends KnnVectorsReader {
float[] centroid(int centroidOrdinal) throws IOException;
- float score(int centroidOrdinal) throws IOException;
+ void bulkScore(NeighborQueue queue) throws IOException;
}
interface PostingVisitor {