[[search-aggregations-metrics-sum-aggregation]] === Sum aggregation ++++ Sum ++++ A `single-value` metrics aggregation that sums up numeric values that are extracted from the aggregated documents. These values can be extracted either from specific numeric or <> fields. Assuming the data consists of documents representing sales records we can sum the sale price of all hats with: [source,console] -------------------------------------------------- POST /sales/_search?size=0 { "query": { "constant_score": { "filter": { "match": { "type": "hat" } } } }, "aggs": { "hat_prices": { "sum": { "field": "price" } } } } -------------------------------------------------- // TEST[setup:sales] Resulting in: [source,console-result] -------------------------------------------------- { ... "aggregations": { "hat_prices": { "value": 450.0 } } } -------------------------------------------------- // TESTRESPONSE[s/\.\.\./"took": $body.took,"timed_out": false,"_shards": $body._shards,"hits": $body.hits,/] The name of the aggregation (`hat_prices` above) also serves as the key by which the aggregation result can be retrieved from the returned response. ==== Script If you need to get the `sum` for something more complex than a single field, run the aggregation on a <>. [source,console] ---- POST /sales/_search?size=0 { "runtime_mappings": { "price.weighted": { "type": "double", "script": """ double price = doc['price'].value; if (doc['promoted'].value) { price *= 0.8; } emit(price); """ } }, "query": { "constant_score": { "filter": { "match": { "type": "hat" } } } }, "aggs": { "hat_prices": { "sum": { "field": "price.weighted" } } } } ---- // TEST[setup:sales] // TEST[s/size=0/size=0&filter_path=aggregations/] //// [source,console-result] ---- { "aggregations": { "hat_prices": { "value": 370.0 } } } ---- //// ==== Missing value The `missing` parameter defines how documents that are missing a value should be treated. By default documents missing the value will be ignored but it is also possible to treat them as if they had a value. For example, this treats all hat sales without a price as being `100`. [source,console] -------------------------------------------------- POST /sales/_search?size=0 { "query": { "constant_score": { "filter": { "match": { "type": "hat" } } } }, "aggs": { "hat_prices": { "sum": { "field": "price", "missing": 100 <1> } } } } -------------------------------------------------- // TEST[setup:sales] [[search-aggregations-metrics-sum-aggregation-histogram-fields]] ==== Histogram fields When sum is computed on <>, the result of the aggregation is the sum of all elements in the `values` array multiplied by the number in the same position in the `counts` array. For example, for the following index that stores pre-aggregated histograms with latency metrics for different networks: [source,console] -------------------------------------------------- PUT metrics_index { "mappings": { "properties": { "latency_histo": { "type": "histogram" } } } } PUT metrics_index/_doc/1?refresh { "network.name" : "net-1", "latency_histo" : { "values" : [0.1, 0.2, 0.3, 0.4, 0.5], "counts" : [3, 7, 23, 12, 6] } } PUT metrics_index/_doc/2?refresh { "network.name" : "net-2", "latency_histo" : { "values" : [0.1, 0.2, 0.3, 0.4, 0.5], "counts" : [8, 17, 8, 7, 6] } } POST /metrics_index/_search?size=0&filter_path=aggregations { "aggs" : { "total_latency" : { "sum" : { "field" : "latency_histo" } } } } -------------------------------------------------- For each histogram field, the `sum` aggregation will add each number in the `values` array, multiplied by its associated count in the `counts` array. Eventually, it will add all values for all histograms and return the following result: [source,console-result] -------------------------------------------------- { "aggregations": { "total_latency": { "value": 28.8 } } } --------------------------------------------------