--- mapped_pages: - https://www.elastic.co/guide/en/elasticsearch/painless/current/painless-operators-numeric.html products: - id: painless --- # Operators: Numeric [painless-operators-numeric] ## Post Increment [post-increment-operator] Use the `post increment operator '++'` to INCREASE the value of a numeric type variable/field by `1`. An extra implicit cast is necessary to return the promoted numeric type value to the original numeric type value of the variable/field for the following types: `byte`, `short`, and `char`. If a variable/field is read as part of an expression the value is loaded prior to the increment. **Errors** * If the variable/field is a non-numeric type. **Grammar** ```text post_increment: ( variable | field ) '++'; ``` **Promotion** | original | promoted | implicit | | --- | --- | --- | | byte | int | byte | | short | int | short | | char | int | char | | int | int | | | long | long | | | float | float | | | double | double | | | def | def | | **Examples** * Post increment with different numeric types. ```painless short i = 0; <1> i++; <2> long j = 1; <3> long k; <4> k = j++; <5> ``` 1. declare `short i`; store `short 0` to `i` 2. load from `i` → `short 0`; promote `short 0`: result `int`; add `int 0` and `int 1` → `int 1`; implicit cast `int 1` to `short 1`; store `short 1` to `i` 3. declare `long j`; implicit cast `int 1` to `long 1` → `long 1`; store `long 1` to `j` 4. declare `long k`; store default `long 0` to `k` 5. load from `j` → `long 1`; store `long 1` to `k`; add `long 1` and `long 1` → `long 2`; store `long 2` to `j` * Post increment with the `def` type. ```painless def x = 1; <1> x++; <2> ``` 1. declare `def x`; implicit cast `int 1` to `def` → `def`; store `def` to `x` 2. load from `x` → `def`; implicit cast `def` to `int 1`; add `int 1` and `int 1` → `int 2`; implicit cast `int 2` to `def`; store `def` to `x` ## Post Decrement [post-decrement-operator] Use the `post decrement operator '--'` to DECREASE the value of a numeric type variable/field by `1`. An extra implicit cast is necessary to return the promoted numeric type value to the original numeric type value of the variable/field for the following types: `byte`, `short`, and `char`. If a variable/field is read as part of an expression the value is loaded prior to the decrement. **Errors** * If the variable/field is a non-numeric type. **Grammar** ```text post_decrement: ( variable | field ) '--'; ``` **Promotion** | original | promoted | implicit | | --- | --- | --- | | byte | int | byte | | short | int | short | | char | int | char | | int | int | | | long | long | | | float | float | | | double | double | | | def | def | | **Examples** * Post decrement with different numeric types. ```painless short i = 0; <1> i--; <2> long j = 1; <3> long k; <4> k = j--; <5> ``` 1. declare `short i`; store `short 0` to `i` 2. load from `i` → `short 0`; promote `short 0`: result `int`; subtract `int 1` from `int 0` → `int -1`; implicit cast `int -1` to `short -1`; store `short -1` to `i` 3. declare `long j`; implicit cast `int 1` to `long 1` → `long 1`; store `long 1` to `j` 4. declare `long k`; store default `long 0` to `k` 5. load from `j` → `long 1`; store `long 1` to `k`; subtract `long 1` from `long 1` → `long 0`; store `long 0` to `j` * Post decrement with the `def` type. ```painless def x = 1; <1> x--; <2> ``` 1. declare `def x`; implicit cast `int 1` to `def` → `def`; store `def` to `x` 2. load from `x` → `def`; implicit cast `def` to `int 1`; subtract `int 1` from `int 1` → `int 0`; implicit cast `int 0` to `def`; store `def` to `x` ## Pre Increment [pre-increment-operator] Use the `pre increment operator '++'` to INCREASE the value of a numeric type variable/field by `1`. An extra implicit cast is necessary to return the promoted numeric type value to the original numeric type value of the variable/field for the following types: `byte`, `short`, and `char`. If a variable/field is read as part of an expression the value is loaded after the increment. **Errors** * If the variable/field is a non-numeric type. **Grammar** ```text pre_increment: '++' ( variable | field ); ``` **Promotion** | original | promoted | implicit | | --- | --- | --- | | byte | int | byte | | short | int | short | | char | int | char | | int | int | | | long | long | | | float | float | | | double | double | | | def | def | | **Examples** * Pre increment with different numeric types. ```painless short i = 0; <1> ++i; <2> long j = 1; <3> long k; <4> k = ++j; <5> ``` 1. declare `short i`; store `short 0` to `i` 2. load from `i` → `short 0`; promote `short 0`: result `int`; add `int 0` and `int 1` → `int 1`; implicit cast `int 1` to `short 1`; store `short 1` to `i` 3. declare `long j`; implicit cast `int 1` to `long 1` → `long 1`; store `long 1` to `j` 4. declare `long k`; store default `long 0` to `k` 5. load from `j` → `long 1`; add `long 1` and `long 1` → `long 2`; store `long 2` to `j`; store `long 2` to `k` * Pre increment with the `def` type. ```painless def x = 1; <1> ++x; <2> ``` 1. declare `def x`; implicit cast `int 1` to `def` → `def`; store `def` to `x` 2. load from `x` → `def`; implicit cast `def` to `int 1`; add `int 1` and `int 1` → `int 2`; implicit cast `int 2` to `def`; store `def` to `x` ## Pre Decrement [pre-decrement-operator] Use the `pre decrement operator '--'` to DECREASE the value of a numeric type variable/field by `1`. An extra implicit cast is necessary to return the promoted numeric type value to the original numeric type value of the variable/field for the following types: `byte`, `short`, and `char`. If a variable/field is read as part of an expression the value is loaded after the decrement. **Errors** * If the variable/field is a non-numeric type. **Grammar** ```text pre_decrement: '--' ( variable | field ); ``` **Promotion** | original | promoted | implicit | | --- | --- | --- | | byte | int | byte | | short | int | short | | char | int | char | | int | int | | | long | long | | | float | float | | | double | double | | | def | def | | **Examples** * Pre decrement with different numeric types. ```painless short i = 0; <1> --i; <2> long j = 1; <3> long k; <4> k = --j; <5> ``` 1. declare `short i`; store `short 0` to `i` 2. load from `i` → `short 0`; promote `short 0`: result `int`; subtract `int 1` from `int 0` → `int -1`; implicit cast `int -1` to `short -1`; store `short -1` to `i` 3. declare `long j`; implicit cast `int 1` to `long 1` → `long 1`; store `long 1` to `j` 4. declare `long k`; store default `long 0` to `k` 5. load from `j` → `long 1`; subtract `long 1` from `long 1` → `long 0`; store `long 0` to `j` store `long 0` to `k`; * Pre decrement operator with the `def` type. ```painless def x = 1; <1> --x; <2> ``` 1. declare `def x`; implicit cast `int 1` to `def` → `def`; store `def` to `x` 2. load from `x` → `def`; implicit cast `def` to `int 1`; subtract `int 1` from `int 1` → `int 0`; implicit cast `int 0` to `def`; store `def` to `x` ## Unary Positive [unary-positive-operator] Use the `unary positive operator '+'` to the preserve the IDENTITY of a numeric type value. **Errors** * If the value is a non-numeric type. **Grammar** ```text unary_positive: '+' expression; ``` **Examples** * Unary positive with different numeric types. ```painless int x = +1; <1> long y = +x; <2> ``` 1. declare `int x`; identity `int 1` → `int 1`; store `int 1` to `x` 2. declare `long y`; load from `x` → `int 1`; identity `int 1` → `int 1`; implicit cast `int 1` to `long 1` → `long 1`; store `long 1` to `y` * Unary positive with the `def` type. ```painless def z = +1; <1> int i = +z; <2> ``` 1. declare `def z`; identity `int 1` → `int 1`; implicit cast `int 1` to `def`; store `def` to `z` 2. declare `int i`; load from `z` → `def`; implicit cast `def` to `int 1`; identity `int 1` → `int 1`; store `int 1` to `i`; ## Unary Negative [unary-negative-operator] Use the `unary negative operator '-'` to NEGATE a numeric type value. **Errors** * If the value is a non-numeric type. **Grammar** ```text unary_negative: '-' expression; ``` **Examples** * Unary negative with different numeric types. ```painless int x = -1; <1> long y = -x; <2> ``` 1. declare `int x`; negate `int 1` → `int -1`; store `int -1` to `x` 2. declare `long y`; load from `x` → `int 1`; negate `int -1` → `int 1`; implicit cast `int 1` to `long 1` → `long 1`; store `long 1` to `y` * Unary negative with the `def` type. ```painless def z = -1; <1> int i = -z; <2> ``` 1. declare `def z`; negate `int 1` → `int -1`; implicit cast `int -1` to `def`; store `def` to `z` 2. declare `int i`; load from `z` → `def`; implicit cast `def` to `int -1`; negate `int -1` → `int 1`; store `int 1` to `i`; ## Bitwise Not [bitwise-not-operator] Use the `bitwise not operator '~'` to NOT each bit in an integer type value where a `1-bit` is flipped to a resultant `0-bit` and a `0-bit` is flipped to a resultant `1-bit`. **Errors** * If the value is a non-integer type. **Bits** | original | result | | --- | --- | | 1 | 0 | | 0 | 1 | **Grammar** ```text bitwise_not: '~' expression; ``` **Promotion** | original | promoted | | --- | --- | | byte | int | | short | int | | char | int | | int | int | | long | long | | def | def | **Examples** * Bitwise not with different numeric types. ```painless byte b = 1; <1> int i = ~b; <2> long l = ~i; <3> ``` 1. declare `byte x`; store `byte 1` to b 2. declare `int i`; load from `b` → `byte 1`; implicit cast `byte 1` to `int 1` → `int 1`; bitwise not `int 1` → `int -2`; store `int -2` to `i` 3. declare `long l`; load from `i` → `int -2`; implicit cast `int -2` to `long -2` → `long -2`; bitwise not `long -2` → `long 1`; store `long 1` to `l` * Bitwise not with the `def` type. ```painless def d = 1; <1> def e = ~d; <2> ``` 1. declare `def d`; implicit cast `int 1` to `def` → `def`; store `def` to `d`; 2. declare `def e`; load from `d` → `def`; implicit cast `def` to `int 1` → `int 1`; bitwise not `int 1` → `int -2`; implicit cast `int 1` to `def` → `def`; store `def` to `e` ## Multiplication [multiplication-operator] Use the `multiplication operator '*'` to MULTIPLY together two numeric type values. Rules for resultant overflow and NaN values follow the JVM specification. **Errors** * If either of the values is a non-numeric type. **Grammar** ```text multiplication: expression '*' expression; ``` **Promotion** | | | | | | | | | | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | | byte | short | char | int | long | float | double | def | | byte | int | int | int | int | long | float | double | def | | short | int | int | int | int | long | float | double | def | | char | int | int | int | int | long | float | double | def | | int | int | int | int | int | long | float | double | def | | long | long | long | long | long | long | float | double | def | | float | float | float | float | float | float | float | double | def | | double | double | double | double | double | double | double | double | def | | def | def | def | def | def | def | def | def | def | **Examples** * Multiplication with different numeric types. ```painless int i = 5*4; <1> double d = i*7.0; <2> ``` 1. declare `int i`; multiply `int 4` by `int 5` → `int 20`; store `int 20` in `i` 2. declare `double d`; load from `int i` → `int 20`; promote `int 20` and `double 7.0`: result `double`; implicit cast `int 20` to `double 20.0` → `double 20.0`; multiply `double 20.0` by `double 7.0` → `double 140.0`; store `double 140.0` to `d` * Multiplication with the `def` type. ```painless def x = 5*4; <1> def y = x*2; <2> ``` 1. declare `def x`; multiply `int 5` by `int 4` → `int 20`; implicit cast `int 20` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 20`; multiply `int 20` by `int 2` → `int 40`; implicit cast `int 40` to `def` → `def`; store `def` to `y` ## Division [division-operator] Use the `division operator '/'` to DIVIDE one numeric type value by another. Rules for NaN values and division by zero follow the JVM specification. Division with integer values drops the remainder of the resultant value. **Errors** * If either of the values is a non-numeric type. * If a left-hand side integer type value is divided by a right-hand side integer type value of `0`. **Grammar** ```text division: expression '/' expression; ``` **Promotion** | | | | | | | | | | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | | byte | short | char | int | long | float | double | def | | byte | int | int | int | int | long | float | double | def | | short | int | int | int | int | long | float | double | def | | char | int | int | int | int | long | float | double | def | | int | int | int | int | int | long | float | double | def | | long | long | long | long | long | long | float | double | def | | float | float | float | float | float | float | float | double | def | | double | double | double | double | double | double | double | double | def | | def | def | def | def | def | def | def | def | def | **Examples** * Division with different numeric types. ```painless int i = 29/4; <1> double d = i/7.0; <2> ``` 1. declare `int i`; divide `int 29` by `int 4` → `int 7`; store `int 7` in `i` 2. declare `double d`; load from `int i` → `int 7`; promote `int 7` and `double 7.0`: result `double`; implicit cast `int 7` to `double 7.0` → `double 7.0`; divide `double 7.0` by `double 7.0` → `double 1.0`; store `double 1.0` to `d` * Division with the `def` type. ```painless def x = 5/4; <1> def y = x/2; <2> ``` 1. declare `def x`; divide `int 5` by `int 4` → `int 1`; implicit cast `int 1` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 1`; divide `int 1` by `int 2` → `int 0`; implicit cast `int 0` to `def` → `def`; store `def` to `y` ## Remainder [remainder-operator] Use the `remainder operator '%'` to calculate the REMAINDER for division between two numeric type values. Rules for NaN values and division by zero follow the JVM specification. **Errors** * If either of the values is a non-numeric type. **Grammar** ```text remainder: expression '%' expression; ``` **Promotion** | | | | | | | | | | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | | byte | short | char | int | long | float | double | def | | byte | int | int | int | int | long | float | double | def | | short | int | int | int | int | long | float | double | def | | char | int | int | int | int | long | float | double | def | | int | int | int | int | int | long | float | double | def | | long | long | long | long | long | long | float | double | def | | float | float | float | float | float | float | float | double | def | | double | double | double | double | double | double | double | double | def | | def | def | def | def | def | def | def | def | def | **Examples** * Remainder with different numeric types. ```painless int i = 29%4; <1> double d = i%7.0; <2> ``` 1. declare `int i`; remainder `int 29` by `int 4` → `int 1`; store `int 7` in `i` 2. declare `double d`; load from `int i` → `int 1`; promote `int 1` and `double 7.0`: result `double`; implicit cast `int 1` to `double 1.0` → `double 1.0`; remainder `double 1.0` by `double 7.0` → `double 1.0`; store `double 1.0` to `d` * Remainder with the `def` type. ```painless def x = 5%4; <1> def y = x%2; <2> ``` 1. declare `def x`; remainder `int 5` by `int 4` → `int 1`; implicit cast `int 1` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 1`; remainder `int 1` by `int 2` → `int 1`; implicit cast `int 1` to `def` → `def`; store `def` to `y` ## Addition [addition-operator] Use the `addition operator '+'` to ADD together two numeric type values. Rules for resultant overflow and NaN values follow the JVM specification. **Errors** * If either of the values is a non-numeric type. **Grammar** ```text addition: expression '+' expression; ``` **Promotion** | | | | | | | | | | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | | byte | short | char | int | long | float | double | def | | byte | int | int | int | int | long | float | double | def | | short | int | int | int | int | long | float | double | def | | char | int | int | int | int | long | float | double | def | | int | int | int | int | int | long | float | double | def | | long | long | long | long | long | long | float | double | def | | float | float | float | float | float | float | float | double | def | | double | double | double | double | double | double | double | double | def | | def | def | def | def | def | def | def | def | def | **Examples** * Addition operator with different numeric types. ```painless int i = 29+4; <1> double d = i+7.0; <2> ``` 1. declare `int i`; add `int 29` and `int 4` → `int 33`; store `int 33` in `i` 2. declare `double d`; load from `int i` → `int 33`; promote `int 33` and `double 7.0`: result `double`; implicit cast `int 33` to `double 33.0` → `double 33.0`; add `double 33.0` and `double 7.0` → `double 40.0`; store `double 40.0` to `d` * Addition with the `def` type. ```painless def x = 5+4; <1> def y = x+2; <2> ``` 1. declare `def x`; add `int 5` and `int 4` → `int 9`; implicit cast `int 9` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 9`; add `int 9` and `int 2` → `int 11`; implicit cast `int 11` to `def` → `def`; store `def` to `y` ## Subtraction [subtraction-operator] Use the `subtraction operator '-'` to SUBTRACT a right-hand side numeric type value from a left-hand side numeric type value. Rules for resultant overflow and NaN values follow the JVM specification. **Errors** * If either of the values is a non-numeric type. **Grammar** ```text subtraction: expression '-' expression; ``` **Promotion** | | | | | | | | | | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | | byte | short | char | int | long | float | double | def | | byte | int | int | int | int | long | float | double | def | | short | int | int | int | int | long | float | double | def | | char | int | int | int | int | long | float | double | def | | int | int | int | int | int | long | float | double | def | | long | long | long | long | long | long | float | double | def | | float | float | float | float | float | float | float | double | def | | double | double | double | double | double | double | double | double | def | | def | def | def | def | def | def | def | def | def | **Examples** * Subtraction with different numeric types. ```painless int i = 29-4; <1> double d = i-7.5; <2> ``` 1. declare `int i`; subtract `int 4` from `int 29` → `int 25`; store `int 25` in `i` 2. declare `double d` load from `int i` → `int 25`; promote `int 25` and `double 7.5`: result `double`; implicit cast `int 25` to `double 25.0` → `double 25.0`; subtract `double 33.0` by `double 7.5` → `double 25.5`; store `double 25.5` to `d` * Subtraction with the `def` type. ```painless def x = 5-4; <1> def y = x-2; <2> ``` 1. declare `def x`; subtract `int 4` and `int 5` → `int 1`; implicit cast `int 1` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 1`; subtract `int 2` from `int 1` → `int -1`; implicit cast `int -1` to `def` → `def`; store `def` to `y` ## Left Shift [left-shift-operator] Use the `left shift operator '<<'` to SHIFT lower order bits to higher order bits in a left-hand side integer type value by the distance specified in a right-hand side integer type value. **Errors** * If either of the values is a non-integer type. * If the right-hand side value cannot be cast to an int type. **Grammar** ```text left_shift: expression '<<' expression; ``` **Promotion** The left-hand side integer type value is promoted as specified in the table below. The right-hand side integer type value is always implicitly cast to an `int` type value and truncated to the number of bits of the promoted type value. | original | promoted | | --- | --- | | byte | int | | short | int | | char | int | | int | int | | long | long | | def | def | **Examples** * Left shift with different integer types. ```painless int i = 4 << 1; <1> long l = i << 2L; <2> ``` 1. declare `int i`; left shift `int 4` by `int 1` → `int 8`; store `int 8` in `i` 2. declare `long l` load from `int i` → `int 8`; implicit cast `long 2` to `int 2` → `int 2`; left shift `int 8` by `int 2` → `int 32`; implicit cast `int 32` to `long 32` → `long 32`; store `long 32` to `l` * Left shift with the `def` type. ```painless def x = 4 << 2; <1> def y = x << 1; <2> ``` 1. declare `def x`; left shift `int 4` by `int 2` → `int 16`; implicit cast `int 16` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 16`; left shift `int 16` by `int 1` → `int 32`; implicit cast `int 32` to `def` → `def`; store `def` to `y` ## Right Shift [right-shift-operator] Use the `right shift operator '>>'` to SHIFT higher order bits to lower order bits in a left-hand side integer type value by the distance specified in a right-hand side integer type value. The highest order bit of the left-hand side integer type value is preserved. **Errors** * If either of the values is a non-integer type. * If the right-hand side value cannot be cast to an int type. **Grammar** ```text right_shift: expression '>>' expression; ``` **Promotion** The left-hand side integer type value is promoted as specified in the table below. The right-hand side integer type value is always implicitly cast to an `int` type value and truncated to the number of bits of the promoted type value. | original | promoted | | --- | --- | | byte | int | | short | int | | char | int | | int | int | | long | long | | def | def | **Examples** * Right shift with different integer types. ```painless int i = 32 >> 1; <1> long l = i >> 2L; <2> ``` 1. declare `int i`; right shift `int 32` by `int 1` → `int 16`; store `int 16` in `i` 2. declare `long l` load from `int i` → `int 16`; implicit cast `long 2` to `int 2` → `int 2`; right shift `int 16` by `int 2` → `int 4`; implicit cast `int 4` to `long 4` → `long 4`; store `long 4` to `l` * Right shift with the `def` type. ```painless def x = 16 >> 2; <1> def y = x >> 1; <2> ``` 1. declare `def x`; right shift `int 16` by `int 2` → `int 4`; implicit cast `int 4` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 4`; right shift `int 4` by `int 1` → `int 2`; implicit cast `int 2` to `def` → `def`; store `def` to `y` ## Unsigned Right Shift [unsigned-right-shift-operator] Use the `unsigned right shift operator '>>>'` to SHIFT higher order bits to lower order bits in a left-hand side integer type value by the distance specified in a right-hand side type integer value. The highest order bit of the left-hand side integer type value is **not** preserved. **Errors** * If either of the values is a non-integer type. * If the right-hand side value cannot be cast to an int type. **Grammar** ```text unsigned_right_shift: expression '>>>' expression; ``` **Promotion** The left-hand side integer type value is promoted as specified in the table below. The right-hand side integer type value is always implicitly cast to an `int` type value and truncated to the number of bits of the promoted type value. | original | promoted | | --- | --- | | byte | int | | short | int | | char | int | | int | int | | long | long | | def | def | **Examples** * Unsigned right shift with different integer types. ```painless int i = -1 >>> 29; <1> long l = i >>> 2L; <2> ``` 1. declare `int i`; unsigned right shift `int -1` by `int 29` → `int 7`; store `int 7` in `i` 2. declare `long l` load from `int i` → `int 7`; implicit cast `long 2` to `int 2` → `int 2`; unsigned right shift `int 7` by `int 2` → `int 3`; implicit cast `int 3` to `long 3` → `long 3`; store `long 3` to `l` * Unsigned right shift with the `def` type. ```painless def x = 16 >>> 2; <1> def y = x >>> 1; <2> ``` 1. declare `def x`; unsigned right shift `int 16` by `int 2` → `int 4`; implicit cast `int 4` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 4`; unsigned right shift `int 4` by `int 1` → `int 2`; implicit cast `int 2` to `def` → `def`; store `def` to `y` ## Bitwise And [bitwise-and-operator] Use the `bitwise and operator '&'` to AND together each bit within two integer type values where if both bits at the same index are `1` the resultant bit is `1` and `0` otherwise. **Errors** * If either of the values is a non-integer type. **Bits** | | | | | --- | --- | --- | | | 1 | 0 | | 1 | 1 | 0 | | 0 | 0 | 0 | **Grammar** ```text bitwise_and: expression '&' expression; ``` **Promotion** | | | | | | | | | --- | --- | --- | --- | --- | --- | --- | | | byte | short | char | int | long | def | | byte | int | int | int | int | long | def | | short | int | int | int | int | long | def | | char | int | int | int | int | long | def | | int | int | int | int | int | long | def | | long | long | long | long | long | long | def | | def | def | def | def | def | def | def | **Examples** * Bitwise and with different integer types. ```painless int i = 5 & 6; <1> long l = i & 5L; <2> ``` 1. declare `int i`; bitwise and `int 5` and `int 6` → `int 4`; store `int 4` in `i` 2. declare `long l` load from `int i` → `int 4`; promote `int 4` and `long 5`: result `long`; implicit cast `int 4` to `long 4` → `long 4`; bitwise and `long 4` and `long 5` → `long 4`; store `long 4` to `l` * Bitwise and with the `def` type. ```painless def x = 15 & 6; <1> def y = x & 5; <2> ``` 1. declare `def x`; bitwise and `int 15` and `int 6` → `int 6`; implicit cast `int 6` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 6`; bitwise and `int 6` and `int 5` → `int 4`; implicit cast `int 4` to `def` → `def`; store `def` to `y` ## Bitwise Xor [bitwise-xor-operator] Use the `bitwise xor operator '^'` to XOR together each bit within two integer type values where if one bit is a `1` and the other bit is a `0` at the same index the resultant bit is `1` otherwise the resultant bit is `0`. **Errors** * If either of the values is a non-integer type. **Bits** The following table illustrates the resultant bit from the xoring of two bits. | | | | | --- | --- | --- | | | 1 | 0 | | 1 | 0 | 1 | | 0 | 1 | 0 | **Grammar** ```text bitwise_xor: expression '^' expression; ``` **Promotion** | | | | | | | | | --- | --- | --- | --- | --- | --- | --- | | | byte | short | char | int | long | def | | byte | int | int | int | int | long | def | | short | int | int | int | int | long | def | | char | int | int | int | int | long | def | | int | int | int | int | int | long | def | | long | long | long | long | long | long | def | | def | def | def | def | def | def | def | **Examples** * Bitwise xor with different integer types. ```painless int i = 5 ^ 6; <1> long l = i ^ 5L; <2> ``` 1. declare `int i`; bitwise xor `int 5` and `int 6` → `int 3`; store `int 3` in `i` 2. declare `long l` load from `int i` → `int 4`; promote `int 3` and `long 5`: result `long`; implicit cast `int 3` to `long 3` → `long 3`; bitwise xor `long 3` and `long 5` → `long 6`; store `long 6` to `l` * Bitwise xor with the `def` type. ```painless def x = 15 ^ 6; <1> def y = x ^ 5; <2> ``` 1. declare `def x`; bitwise xor `int 15` and `int 6` → `int 9`; implicit cast `int 9` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 9`; bitwise xor `int 9` and `int 5` → `int 12`; implicit cast `int 12` to `def` → `def`; store `def` to `y` ## Bitwise Or [bitwise-or-operator] Use the `bitwise or operator '|'` to OR together each bit within two integer type values where if at least one bit is a `1` at the same index the resultant bit is `1` otherwise the resultant bit is `0`. **Errors** * If either of the values is a non-integer type. **Bits** The following table illustrates the resultant bit from the oring of two bits. | | | | | --- | --- | --- | | | 1 | 0 | | 1 | 1 | 1 | | 0 | 1 | 0 | **Grammar** ```text bitwise_or: expression '|' expression; ``` **Promotion** | | | | | | | | | --- | --- | --- | --- | --- | --- | --- | | | byte | short | char | int | long | def | | byte | int | int | int | int | long | def | | short | int | int | int | int | long | def | | char | int | int | int | int | long | def | | int | int | int | int | int | long | def | | long | long | long | long | long | long | def | | def | def | def | def | def | def | def | **Examples** * Bitwise or with different integer types. ```painless int i = 5 | 6; <1> long l = i | 8L; <2> ``` 1. declare `int i`; bitwise or `int 5` and `int 6` → `int 7`; store `int 7` in `i` 2. declare `long l` load from `int i` → `int 7`; promote `int 7` and `long 8`: result `long`; implicit cast `int 7` to `long 7` → `long 7`; bitwise or `long 7` and `long 8` → `long 15`; store `long 15` to `l` * Bitwise or with the `def` type. ```painless def x = 5 ^ 6; <1> def y = x ^ 8; <2> ``` 1. declare `def x`; bitwise or `int 5` and `int 6` → `int 7`; implicit cast `int 7` to `def` → `def`; store `def` in `x` 2. declare `def y`; load from `x` → `def`; implicit cast `def` to `int 7`; bitwise or `int 7` and `int 8` → `int 15`; implicit cast `int 15` to `def` → `def`; store `def` to `y`