[role="xpack"] [testenv="basic"] [[vector-functions]] ===== Functions for vector fields NOTE: During vector functions' calculation, all matched documents are linearly scanned. Thus, expect the query time grow linearly with the number of matched documents. For this reason, we recommend to limit the number of matched documents with a `query` parameter. This is the list of available vector functions and vector access methods: 1. `cosineSimilarity` – calculates cosine similarity 2. `dotProduct` – calculates dot product 3. `l1norm` – calculates L^1^ distance 4. `l2norm` - calculates L^2^ distance 5. `doc[].vectorValue` – returns a vector's value as an array of floats 6. `doc[].magnitude` – returns a vector's magnitude Let's create an index with a `dense_vector` mapping and index a couple of documents into it. [source,console] -------------------------------------------------- PUT my-index-000001 { "mappings": { "properties": { "my_dense_vector": { "type": "dense_vector", "dims": 3 }, "status" : { "type" : "keyword" } } } } PUT my-index-000001/_doc/1 { "my_dense_vector": [0.5, 10, 6], "status" : "published" } PUT my-index-000001/_doc/2 { "my_dense_vector": [-0.5, 10, 10], "status" : "published" } POST my-index-000001/_refresh -------------------------------------------------- // TESTSETUP The `cosineSimilarity` function calculates the measure of cosine similarity between a given query vector and document vectors. [source,console] -------------------------------------------------- GET my-index-000001/_search { "query": { "script_score": { "query" : { "bool" : { "filter" : { "term" : { "status" : "published" <1> } } } }, "script": { "source": "cosineSimilarity(params.query_vector, 'my_dense_vector') + 1.0", <2> "params": { "query_vector": [4, 3.4, -0.2] <3> } } } } } -------------------------------------------------- <1> To restrict the number of documents on which script score calculation is applied, provide a filter. <2> The script adds 1.0 to the cosine similarity to prevent the score from being negative. <3> To take advantage of the script optimizations, provide a query vector as a script parameter. NOTE: If a document's dense vector field has a number of dimensions different from the query's vector, an error will be thrown. The `dotProduct` function calculates the measure of dot product between a given query vector and document vectors. [source,console] -------------------------------------------------- GET my-index-000001/_search { "query": { "script_score": { "query" : { "bool" : { "filter" : { "term" : { "status" : "published" } } } }, "script": { "source": """ double value = dotProduct(params.query_vector, 'my_dense_vector'); return sigmoid(1, Math.E, -value); <1> """, "params": { "query_vector": [4, 3.4, -0.2] } } } } } -------------------------------------------------- <1> Using the standard sigmoid function prevents scores from being negative. The `l1norm` function calculates L^1^ distance (Manhattan distance) between a given query vector and document vectors. [source,console] -------------------------------------------------- GET my-index-000001/_search { "query": { "script_score": { "query" : { "bool" : { "filter" : { "term" : { "status" : "published" } } } }, "script": { "source": "1 / (1 + l1norm(params.queryVector, 'my_dense_vector'))", <1> "params": { "queryVector": [4, 3.4, -0.2] } } } } } -------------------------------------------------- <1> Unlike `cosineSimilarity` that represent similarity, `l1norm` and `l2norm` shown below represent distances or differences. This means, that the more similar the vectors are, the lower the scores will be that are produced by the `l1norm` and `l2norm` functions. Thus, as we need more similar vectors to score higher, we reversed the output from `l1norm` and `l2norm`. Also, to avoid division by 0 when a document vector matches the query exactly, we added `1` in the denominator. The `l2norm` function calculates L^2^ distance (Euclidean distance) between a given query vector and document vectors. [source,console] -------------------------------------------------- GET my-index-000001/_search { "query": { "script_score": { "query" : { "bool" : { "filter" : { "term" : { "status" : "published" } } } }, "script": { "source": "1 / (1 + l2norm(params.queryVector, 'my_dense_vector'))", "params": { "queryVector": [4, 3.4, -0.2] } } } } } -------------------------------------------------- NOTE: If a document doesn't have a value for a vector field on which a vector function is executed, an error will be thrown. You can check if a document has a value for the field `my_vector` by `doc['my_vector'].size() == 0`. Your overall script can look like this: [source,js] -------------------------------------------------- "source": "doc['my_vector'].size() == 0 ? 0 : cosineSimilarity(params.queryVector, 'my_vector')" -------------------------------------------------- // NOTCONSOLE The recommended way to access dense vectors is through `cosineSimilarity`, `dotProduct`, `l1norm` or `l2norm` functions. But for custom use cases, you can access dense vectors's values directly through the following functions: - `doc[].vectorValue` – returns a vector's value as an array of floats - `doc[].magnitude` – returns a vector's magnitude as a float (for vectors created prior to version 7.5 the magnitude is not stored. So this function calculates it anew every time it is called). For example, the script below implements a cosine similarity using these two functions: [source,console] -------------------------------------------------- GET my-index-000001/_search { "query": { "script_score": { "query" : { "bool" : { "filter" : { "term" : { "status" : "published" } } } }, "script": { "source": """ float[] v = doc['my_dense_vector'].vectorValue; float vm = doc['my_dense_vector'].magnitude; float dotProduct = 0; for (int i = 0; i < v.length; i++) { dotProduct += v[i] * params.queryVector[i]; } return dotProduct / (vm * (float) params.queryVectorMag); """, "params": { "queryVector": [4, 3.4, -0.2], "queryVectorMag": 5.25357 } } } } } --------------------------------------------------