[[downsampling-manual]] === Run downsampling manually ++++ Run downsampling manually ++++ This is a simplified example that allows you to see quickly how <> works to reduce the storage size of a time series index. The example uses typical Kubernetes cluster monitoring data. To test out downsampling, follow these steps: . Check the <>. . <>. . <>. . <>. . <>. [discrete] [[downsampling-manual-prereqs]] ==== Prerequisites Refer to <>. For the example you need a sample data file. Download the file from link: https://static-www.elastic.co/v3/assets/bltefdd0b53724fa2ce/bltf2fe7a300c3c59f7/631b4bc5cc56115de2f58e8c/sample-k8s-metrics.json[here] and save it in the local directory where you're running {es}. [discrete] [[downsampling-manual-create-index]] ==== Create a time series index This creates an index for a basic data stream. The available parameters for an index are described in detail in <>. The time series boundaries are set so that sampling data for the index begins at `2022-06-10T00:00:00Z` and ends at `2022-06-30T23:59:59Z`. For simplicity, in the time series mapping all `time_series_metric` parameters are set to type `gauge`, but <> such as `counter` and `histogram` may also be used. The `time_series_metric` values determine the kind of statistical representations that are used during downsampling. The index template includes a set of static <>: `host`, `namespace`, `node`, and `pod`. The time series dimensions are not changed by the downsampling process. [source,console] ---- PUT /sample-01 { "settings": { "index": { "mode": "time_series", "time_series": { "start_time": "2022-06-10T00:00:00Z", "end_time": "2022-06-30T23:59:59Z" }, "routing_path": [ "kubernetes.namespace", "kubernetes.host", "kubernetes.node", "kubernetes.pod" ], "number_of_replicas": 0, "number_of_shards": 2 } }, "mappings": { "properties": { "@timestamp": { "type": "date" }, "kubernetes": { "properties": { "container": { "properties": { "cpu": { "properties": { "usage": { "properties": { "core": { "properties": { "ns": { "type": "long" } } }, "limit": { "properties": { "pct": { "type": "float" } } }, "nanocores": { "type": "long", "time_series_metric": "gauge" }, "node": { "properties": { "pct": { "type": "float" } } } } } } }, "memory": { "properties": { "available": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } }, "majorpagefaults": { "type": "long" }, "pagefaults": { "type": "long", "time_series_metric": "gauge" }, "rss": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } }, "usage": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" }, "limit": { "properties": { "pct": { "type": "float" } } }, "node": { "properties": { "pct": { "type": "float" } } } } }, "workingset": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } } } }, "name": { "type": "keyword" }, "start_time": { "type": "date" } } }, "host": { "type": "keyword", "time_series_dimension": true }, "namespace": { "type": "keyword", "time_series_dimension": true }, "node": { "type": "keyword", "time_series_dimension": true }, "pod": { "type": "keyword", "time_series_dimension": true } } } } } } ---- [discrete] [[downsampling-manual-ingest-data]] ==== Ingest time series data In a terminal window with {es} running, run the following curl command to load the documents from the downloaded sample data file: [source,sh] ---- curl -s -H "Content-Type: application/json" \ -XPOST http:///sample-01/_bulk?pretty \ --data-binary @sample-k8s-metrics.json ---- // NOTCONSOLE Approximately 18,000 documents are added. Check the search results for the newly ingested data: [source,console] ---- GET /sample-01*/_search ---- // TEST[continued] The query has at least 10,000 hits and returns the first 10. In each document you can see the time series dimensions (`host`, `node`, `pod` and `container`) as well as the various CPU and memory time series metrics. [source,console-result] ---- "hits": { "total": { "value": 10000, "relation": "gte" }, "max_score": 1, "hits": [ { "_index": "sample-01", "_id": "WyHN6N6AwdaJByQWAAABgYOOweA", "_score": 1, "_source": { "@timestamp": "2022-06-20T23:59:40Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-1", "pod": "gke-apps-0-1-0", "container": { "cpu": { "usage": { "nanocores": 80037, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 790830121 }, "usage": { "bytes": 139548672, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 2248540 }, "rss": { "bytes": 289260 }, "pagefaults": 74843, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } } } ... ---- // TEST[skip:todo] // TEST[continued] Next, you can run a terms aggregation on the set of time series dimensions (`_tsid`) to view a date histogram on a fixed interval of one day. [source,console] ---- GET /sample-01*/_search { "size": 0, "aggs": { "tsid": { "terms": { "field": "_tsid" }, "aggs": { "over_time": { "date_histogram": { "field": "@timestamp", "fixed_interval": "1d" }, "aggs": { "min": { "min": { "field": "kubernetes.container.memory.usage.bytes" } }, "max": { "max": { "field": "kubernetes.container.memory.usage.bytes" } }, "avg": { "avg": { "field": "kubernetes.container.memory.usage.bytes" } } } } } } } } ---- // TEST[continued] [discrete] [[downsampling-manual-run]] ==== Run downsampling for the index Before running downsampling, the index needs to be set to read only mode: [source,console] ---- PUT /sample-01/_block/write ---- // TEST[continued] And now, you can use the <> to downsample the index, setting the time series interval to one hour: [source,console] ---- POST /sample-01/_downsample/sample-01-downsample { "fixed_interval": "1h" } ---- // TEST[continued] Finally, delete the original index: [source,console] ---- DELETE /sample-01 ---- // TEST[continued] [discrete] [[downsampling-manual-view-results]] ==== View the results Re-run your search query: [source,console] ---- GET /sample-01*/_search ---- // TEST[continued] In the query results, notice that the number of hits has been reduced to only 288 documents. As well, for each time series metric statistical representations have been calculated: `min`, `max`, `sum`, and `value_count`. [source,console-result] ---- "hits": { "total": { "value": 288, "relation": "eq" }, "max_score": 1, "hits": [ { "_index": "sample-01-downsample", "_id": "WyHN6N6AwdaJByQWAAABgYNYIYA", "_score": 1, "_source": { "@timestamp": "2022-06-20T23:00:00.000Z", "_doc_count": 81, "kubernetes.host": "gke-apps-0", "kubernetes.namespace": "namespace26", "kubernetes.node": "gke-apps-0-1", "kubernetes.pod": "gke-apps-0-1-0", "kubernetes.container.cpu.usage.nanocores": { "min": 23344, "max": 163408, "sum": 7488985, "value_count": 81 }, "kubernetes.container.memory.available.bytes": { "min": 167751844, "max": 1182251090, "sum": 58169948901, "value_count": 81 }, "kubernetes.container.memory.rss.bytes": { "min": 54067, "max": 391987, "sum": 17550215, "value_count": 81 }, "kubernetes.container.memory.pagefaults": { "min": 69086, "max": 428910, "sum": 20239365, "value_count": 81 }, "kubernetes.container.memory.workingset.bytes": { "min": 323420, "max": 2279342, "sum": 104233700, "value_count": 81 }, "kubernetes.container.memory.usage.bytes": { "min": 61401416, "max": 413064069, "sum": 18557182404, "value_count": 81 } } }, ... ---- // TEST[skip:todo] You can now re-run the earlier aggregation. Even though the aggregation runs on the downsampled data stream that only contains 288 documents, it returns the same results as the earlier aggregation on the original data stream. [source,console] ---- GET /sample-01*/_search { "size": 0, "aggs": { "tsid": { "terms": { "field": "_tsid" }, "aggs": { "over_time": { "date_histogram": { "field": "@timestamp", "fixed_interval": "1d" }, "aggs": { "min": { "min": { "field": "kubernetes.container.memory.usage.bytes" } }, "max": { "max": { "field": "kubernetes.container.memory.usage.bytes" } }, "avg": { "avg": { "field": "kubernetes.container.memory.usage.bytes" } } } } } } } } ---- // TEST[continued] This example demonstrates how downsampling can dramatically reduce the number of records stored for time series data, within whatever time boundaries you choose. It's also possible to perform downsampling on already downsampled data, to further reduce storage and associated costs, as the time series data ages and the data resolution becomes less critical. Downsampling is very easily integrated within an ILM policy. To learn more, try the <> example.