[role="xpack"] [[put-inference-api]] === Create {infer} API experimental[] Creates a model to perform an {infer} task. IMPORTANT: The {infer} APIs enable you to use certain services, such as ELSER, OpenAI, or Hugging Face, in your cluster. This is not the same feature that you can use on an ML node with custom {ml} models. If you want to train and use your own model, use the <>. [discrete] [[put-inference-api-request]] ==== {api-request-title} `PUT /_inference//` [discrete] [[put-inference-api-prereqs]] ==== {api-prereq-title} * Requires the `manage` <>. [discrete] [[put-inference-api-desc]] ==== {api-description-title} The create {infer} API enables you to create and configure an {infer} model to perform a specific {infer} task. The following services are available through the {infer} API: * ELSER * OpenAI * Hugging Face [discrete] [[put-inference-api-path-params]] ==== {api-path-parms-title} ``:: (Required, string) The unique identifier of the model. ``:: (Required, string) The type of the {infer} task that the model will perform. Available task types: * `sparse_embedding`, * `text_embedding`. [discrete] [[put-inference-api-request-body]] == {api-request-body-title} `service`:: (Required, string) The type of service supported for the specified task type. Available services: * `elser`: specify the `sparse_embedding` task type to use the ELSER service. * `openai`: specify the `text_embedding` task type to use the OpenAI service. * `hugging_face`: specify the `text_embedding` task type to use the Hugging Face service. `service_settings`:: (Required, object) Settings used to install the {infer} model. These settings are specific to the `service` you specified. + .`service_settings` for `elser` [%collapsible%closed] ===== `num_allocations`::: (Required, integer) The number of model allocations to create. `num_threads`::: (Required, integer) The number of threads to use by each model allocation. ===== + .`service_settings` for `openai` [%collapsible%closed] ===== `api_key`::: (Required, string) A valid API key of your OpenAI account. You can find your OpenAI API keys in your OpenAI account under the https://platform.openai.com/api-keys[API keys section]. IMPORTANT: You need to provide the API key only once, during the {infer} model creation. The <> does not retrieve your API key. After creating the {infer} model, you cannot change the associated API key. If you want to use a different API key, delete the {infer} model and recreate it with the same name and the updated API key. `organization_id`::: (Optional, string) The unique identifier of your organization. You can find the Organization ID in your OpenAI account under https://platform.openai.com/account/organization[**Settings** > **Organizations**]. `url`::: (Optional, string) The URL endpoint to use for the requests. Can be changed for testing purposes. Defaults to `https://api.openai.com/v1/embeddings`. ===== `task_settings`:: (Optional, object) Settings to configure the {infer} task. These settings are specific to the `` you specified. + .`task_settings` for `text_embedding` [%collapsible%closed] ===== `model`::: (Optional, string) The name of the model to use for the {infer} task. Refer to the https://platform.openai.com/docs/guides/embeddings/what-are-embeddings[OpenAI documentation] for the list of available text embedding models. ===== [discrete] [[put-inference-api-example]] ==== {api-examples-title} The following example shows how to create an {infer} model called `my-elser-model` to perform a `sparse_embedding` task type. [source,console] ------------------------------------------------------------ PUT _inference/sparse_embedding/my-elser-model { "service": "elser", "service_settings": { "num_allocations": 1, "num_threads": 1 }, "task_settings": {} } ------------------------------------------------------------ // TEST[skip:TBD] Example response: [source,console-result] ------------------------------------------------------------ { "model_id": "my-elser-model", "task_type": "sparse_embedding", "service": "elser", "service_settings": { "num_allocations": 1, "num_threads": 1 }, "task_settings": {} } ------------------------------------------------------------ // NOTCONSOLE The following example shows how to create an {infer} model called `openai_embeddings` to perform a `text_embedding` task type. [source,console] ------------------------------------------------------------ PUT _inference/text_embedding/openai_embeddings { "service": "openai", "service_settings": { "api_key": "" }, "task_settings": { "model": "text-embedding-ada-002" } } ------------------------------------------------------------ // TEST[skip:TBD]