
RISC-V Advanced Core Local
Interruptor Specification

RISC-V Platform Specification Task Group

Version 1.0-rc4 (stable), January 10, 2022: This document is in Draft state. Change should be expected.

Table of Contents
Preamble . 1
Copyright and license information . 2
Change Log . 3

Version 1.0 . 3
1. Introduction . 4

1.1. Backward Compatibility With SiFive CLINT . 4
2. Machine-level Timer Device (MTIMER). 5

2.1. Register Map . 5
2.2. MTIME Register (Offset: 0x00000000). 6
2.3. MTIMECMP Registers (Offsets: 0x00000000 - 0x00007FF0) . 6
2.4. Synchronizing Multiple MTIME Registers. 6

3. Machine-level Software Interrupt Device (MSWI). 8
3.1. Register Map . 8
3.2. MSIP Registers (Offsets: 0x00000000 - 0x00003FF8) . 8

4. Supervisor-level Software Interrupt Device (SSWI). 9
4.1. Register Map . 9
4.2. SETSSIP Registers (Offsets: 0x00000000 - 0x00003FF8) . 9

Preamble



This document is in the Draft state

Assume everything can change. This draft specification will change before being accepted
as standard, so implementations made to this draft specification will likely not conform to
the future standard.

Preamble | Page 1

RISC-V Advanced Core Local Interruptor Specification | © RISC-V

http://riscv.org/spec-state

Copyright and license information
This RISC-V ACLINT specification has been contributed directly or indirectly by:

• Andrew Waterman <andrew@sifive.com>

• Greg Favor <gfavor@ventanamicro.com>

• John Hauser <jh.riscv@jhauser.us>

• Anup Patel <anup.patel@wdc.com>

• Bin Meng <bmeng.cn@gmail.com>

• Wesley Norris <repnop@outlook.com>

NOTE: Please add yourself to the above list if you have contributed to the RISC-V ACLINT
specification.

It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full
license text is available at creativecommons.org/licenses/by/4.0/.

Copyright and license information | Page 2

RISC-V Advanced Core Local Interruptor Specification | © RISC-V

mailto:andrew@sifive.com
mailto:gfavor@ventanamicro.com
mailto:jh.riscv@jhauser.us
mailto:anup.patel@wdc.com
mailto:bmeng.cn@gmail.com
mailto:repnop@outlook.com
https://creativecommons.org/licenses/by/4.0/

Change Log

Version 1.0
• Dedicated chapter on synchronizing multiple MTIMER devices

• Initial release with MTIMER, MSWI, and SSWI devices

Version 1.0 | Page 3

RISC-V Advanced Core Local Interruptor Specification | © RISC-V

Chapter 1. Introduction
This RISC-V ACLINT specification defines a set of memory mapped devices which provide inter-
processor interrupts (IPI) and timer functionalities for each HART on a multi-HART RISC-V platform.
These HART-level IPI and timer functionalities are required by operating systems, bootloaders and
firmwares running on a multi-HART RISC-V platform.

The SiFive Core-Local Interruptor (CLINT) device has been widely adopted in the RISC-V world to
provide machine-level IPI and timer functionalities. Unfortunately, the SiFive CLINT has a unified
register map for both IPI and timer functionalities and it does not provide supervisor-level IPI
functionality.

The RISC-V ACLINT specification takes a more modular approach by defining separate memory
mapped devices for IPI and timer functionalities. This modularity allows RISC-V platforms to omit
some of the RISC-V ACLINT devices for when the platform has an alternate mechanism. In addition to
modularity, the RISC-V ACLINT specification also defines a dedicated memory mapped device for
supervisor-level IPIs. The Table 1 below shows the list of devices defined by the RISC-V ACLINT
specification.

Table 1. ACLINT Devices

Name Privilege Level Functionality

MTIMER Machine Fixed-frequency counter and timer events

MSWI Machine Inter-processor (or software) interrupts

SSWI Supervisor Inter-processor (or software) interrupts

1.1. Backward Compatibility With SiFive CLINT
The RISC-V ACLINT specification is defined to be backward compatible with the SiFive CLINT
specification. The register definitions and register offsets of the MTIMER and MSWI devices are
compatible with the timer and IPI registers defined by the SiFive CLINT specification. A SiFive CLINT
device on a RISC-V platform can be logically seen as one MSWI device and one MTIMER devices
placed next to each other in the memory address space as shown in Table 2 below.

Table 2. One SiFive CLINT device is equivalent to two ACLINT devices

SiFive CLINT Offset Range ACLINT Device Functionality

0x0000_0000 - 0x0000_3fff MSWI Machine-level inter-processor (or
software) interrupts

0x0000_4000 - 0x0000_bfff MTIMER Machine-level fixed-frequency
counter and timer events

1.1. Backward Compatibility With SiFive CLINT | Page 4

RISC-V Advanced Core Local Interruptor Specification | © RISC-V

Chapter 2. Machine-level Timer Device
(MTIMER)
The MTIMER device provides machine-level timer functionality for a set of HARTs on a RISC-V
platform. It has a single fixed-frequency monotonic time counter (MTIME) register and a time
compare register (MTIMECMP) for each HART connected to the MTIMER device. A MTIMER device
not connected to any HART should only have a MTIME register and no MTIMECMP registers.

On a RISC-V platform with multiple MTIMER devices:

• Each MTIMER device provides machine-level timer functionality for a different (or disjoint) set of
HARTs. A MTIMER device assigns a HART index starting from zero to each HART associated with
it. The HART index assigned to a HART by the MTIMER device may or may not have any
relationship with the unique HART identifier (hart ID) that the RISC-V Privileged Architecture
assigns to the HART.

• Two or more MTIMER devices can share the same physical MTIME register while having their
own separate MTIMECMP registers.

• The MTIMECMP registers of a MTIMER device must only compare against the MTIME register of
the same MTIMER device for generating machine-level timer interrupt.

The maximum number of HARTs supported by a single MTIMER device is 4095 which is equivalent
to the maximum number of MTIMECMP registers.

2.1. Register Map
A MTIMER device has two separate base addresses: one for the MTIME register and another for the
MTIMECMP registers. These separate base addresses of a single MTIMER device allows multiple
MTIMER devices to share the same physical MTIME register.

The Table 3 below shows map of the MTIME register whereas the Table 4 below shows map of the
MTIMECMP registers relative to separate base addresses.

Table 3. ACLINT MTIMER Time Register Map

Offset Width Attr Name Description

0x0000_0000 8B RW MTIME Machine-level time counter

Table 4. ACLINT MTIMER Compare Register Map

Offset Width Attr Name Description

0x0000_0000 8B RW MTIMECMP0 HART index 0 machine-level time
compare

0x0000_0008 8B RW MTIMECMP1 HART index 1 machine-level time
compare

… … … … …

0x0000_7FF0 8B RW MTIMECMP4094 HART index 4094 machine-level
time compare

2.1. Register Map | Page 5

RISC-V Advanced Core Local Interruptor Specification | © RISC-V

2.2. MTIME Register (Offset: 0x00000000)
The MTIME register is a 64-bit read-write register that contains the number of cycles counted based
on a fixed reference frequency.

On MTIMER device reset, the MTIME register is cleared to zero.

2.3. MTIMECMP Registers (Offsets: 0x00000000 -
0x00007FF0)
The MTIMECMP registers are per-HART 64-bit read-write registers. It contains the MTIME register
value at which machine-level timer interrupt is to be triggered for the corresponding HART.

The machine-level timer interrupt of a HART is pending whenever MTIME is greater than or equal to
the value in the corresponding MTIMECMP register whereas the machine-level timer interrupt of a
HART is cleared whenever MTIME is less than the value of the corresponding MTIMECMP register.
The machine-level timer interrupt is reflected in the MTIP bit of the mip CSR.

On MTIMER device reset, the MTIMECMP registers are in unknown state.

2.4. Synchronizing Multiple MTIME Registers
A RISC-V platform can have multiple HARTs grouped into hierarchical topology groups (such as
clusters, nodes, or sockets) where each topology group has it’s own MTIMER device. Further, such
RISC-V platforms can also allow clock-gating or powering off for a topology group (including the
MTIMER device) at runtime.

On a RISC-V platform with multiple MTIMER devices residing on the same die, each device must
satisfy the RISC-V architectural requirement that all the MTIME registers with respect to each other,
and all the per-HART time CSRs with respect to each other, are synchronized to within one MTIME
tick period. For example, if the MTIME tick period is 10ns, then the MTIME registers, and their
associated time CSRs, should respectively be synchronized to within 10ns of each other.

On a RISC-V platform with multiple MTIMER devices on different die, the MTIME registers (and their
associated time CSRs) on different die may be synchronized to only within a specified interval of each
other that is larger than the MTIME tick period. A platform may define a maximum allowed interval.

To satisfy the preceding MTIME synchronization requirements:

• All MTIME registers should have the same input clock so as to avoid runtime drift between
separate MTIME registers (and their associated time CSRs)

• Upon system reset, the hardware must initialize and synchronize all MTIME registers to zero

• When a MTIMER device is stopped and started again due to, say, power management actions, the
software should re-synchronize this MTIME register with all other MTIME registers

When software updates one, multiple, or all MTIME registers, it must maintain the preceding
synchronization requirements (through measuring and then taking into account the differing
latencies of performing reads or writes to the different MTIME registers).

2.2. MTIME Register (Offset: 0x00000000) | Page 6

RISC-V Advanced Core Local Interruptor Specification | © RISC-V

As an example, the below RISC-V 64-bit assembly sequence can be used by software to synchronize a
MTIME register with reference to another MTIME register.

Listing 1. Synchronizing a MTIME Registers On RISC-V 64-bit Platform

/*
 * unsigned long aclint_mtime_sync(unsigned long target_mtime_address,
 * unsigned long reference_mtime_address)
 */
 .globl aclint_mtime_sync
aclint_mtime_sync:
 /* Read target MTIME register in T0 register */
 ld t0, (a0)
 fence i, i

 /* Read reference MTIME register in T1 register */
 ld t1, (a1)
 fence i, i

 /* Read target MTIME register in T2 register */
 ld t2, (a0)
 fence i, i

 /*
 * Compute target MTIME adjustment in T3 register
 * T3 = T1 - ((T0 + T2) / 2)
 */
 srli t0, t0, 1
 srli t2, t2, 1
 add t3, t0, t2
 sub t3, t1, t3

 /* Update target MTIME register */
 ld t4, (a0)
 add t4, t4, t3
 sd t4, (a0)

 /* Return MTIME adjustment value */
 add a0, t3, zero

 ret

NOTE: On some RISC-V platforms, the MTIME synchronization sequence (i.e. the
aclint_mtime_sync() function above) will need to be repeated few times until delta between target
MTIME register and reference MTIME register is zero (or very close to zero).

2.4. Synchronizing Multiple MTIME Registers | Page 7

RISC-V Advanced Core Local Interruptor Specification | © RISC-V

Chapter 3. Machine-level Software
Interrupt Device (MSWI)
The MSWI device provides machine-level IPI functionality for a set of HARTs on a RISC-V platform. It
has an IPI register (MSIP) for each HART connected to the MSWI device.

On a RISC-V platform with multiple MSWI devices, each MSWI device provides machine-level IPI
functionality for a different (or disjoint) set of HARTs. A MSWI device assigns a HART index starting
from zero to each HART associated with it. The HART index assigned to a HART by the MSWI device
may or may not have any relationship with the unique HART identifier (hart ID) that the RISC-V
Privileged Architecture assigns to the HART.

The maximum number of HARTs supported by a single MSWI device is 4095 which is equivalent to
the maximum number of MSIP registers.

3.1. Register Map
Table 5. ACLINT MSWI Device Register Map

Offset Width Attr Name Description

0x0000_0000 4B RW MSIP0 HART index 0 machine-level IPI
register

0x0000_0004 4B RW MSIP1 HART index 1 machine-level IPI
register

… … … … …

0x0000_3FFC 4B RESERVED Reserved for future use.

3.2. MSIP Registers (Offsets: 0x00000000 -
0x00003FF8)
Each MSIP register is a 32-bit wide WARL register where the upper 31 bits are wired to zero. The least
significant bit is reflected in MSIP of the mip CSR. A machine-level software interrupt for a HART is
pending or cleared by writing 1 or 0 respectively to the corresponding MSIP register.

On MSWI device reset, each MSIP register is cleared to zero.

3.1. Register Map | Page 8

RISC-V Advanced Core Local Interruptor Specification | © RISC-V

Chapter 4. Supervisor-level Software
Interrupt Device (SSWI)
The SSWI device provides supervisor-level IPI functionality for a set of HARTs on a RISC-V platform.
It provides a register to set an IPI (SETSSIP) for each HART connected to the SSWI device.

On a RISC-V platform with multiple SSWI devices, each SSWI device provides supervisor-level IPI
functionality for a different (or disjoint) set of HARTs. A SSWI device assigns a HART index starting
from zero to each HART associated with it. The HART index assigned to a HART by the SSWI device
may or may not have any relationship with the unique HART identifier (hart ID) that the RISC-V
Privileged Architecture assigns to the HART.

The maximum number of HARTs supported by a single SSWI device is 4095 which is equivalent to
the maximum number of SETSSIP registers.

4.1. Register Map
Table 6. ACLINT SSWI Device Register Map

Offset Width Attr Name Description

0x0000_0000 4B RW SETSSIP0 HART index 0 set supervisor-level
IPI register

0x0000_0004 4B RW SETSSIP1 HART index 1 set supervisor-level IPI
register

… … … … …

0x0000_3FFC 4B RESERVED Reserved for future use.

4.2. SETSSIP Registers (Offsets: 0x00000000 -
0x00003FF8)
Each SETSSIP register is a 32-bit wide WARL register where the upper 31 bits are wired to zero. The
least significant bit of a SETSSIP register always reads 0. Writing 0 to the least significant bit of a
SETSSIP register has no effect whereas writing 1 to the least significant bit sends an edge-sensitive
interrupt signal to the corresponding HART causing the HART to set SSIP in the mip CSR. Writes to a
SETSSIP register are guaranteed to be reflected in SSIP of the corresponding HART but not necessarily
immediately.

NOTE: The RISC-V Privileged Architecture defines SSIP in mip and sip CSRs as a writeable bit so the
M-mode or S-mode software can directly clear SSIP.

4.1. Register Map | Page 9

RISC-V Advanced Core Local Interruptor Specification | © RISC-V

	RISC-V Advanced Core Local Interruptor Specification
	Table of Contents
	Preamble
	Copyright and license information
	Change Log
	Version 1.0

	Chapter 1. Introduction
	1.1. Backward Compatibility With SiFive CLINT

	Chapter 2. Machine-level Timer Device (MTIMER)
	2.1. Register Map
	2.2. MTIME Register (Offset: 0x00000000)
	2.3. MTIMECMP Registers (Offsets: 0x00000000 - 0x00007FF0)
	2.4. Synchronizing Multiple MTIME Registers

	Chapter 3. Machine-level Software Interrupt Device (MSWI)
	3.1. Register Map
	3.2. MSIP Registers (Offsets: 0x00000000 - 0x00003FF8)

	Chapter 4. Supervisor-level Software Interrupt Device (SSWI)
	4.1. Register Map
	4.2. SETSSIP Registers (Offsets: 0x00000000 - 0x00003FF8)

