// ================================================================================ // // The NEORV32 RISC-V Processor - https://github.com/stnolting/neorv32 // // Copyright (c) NEORV32 contributors. // // Copyright (c) 2020 - 2024 Stephan Nolting. All rights reserved. // // Licensed under the BSD-3-Clause license, see LICENSE for details. // // SPDX-License-Identifier: BSD-3-Clause // // ================================================================================ // /**********************************************************************//** * @file demo_onewire/main.c * @author Stephan Nolting * @brief Demo program for the NEORV32 1-Wire interface controller (ONEWIRE). **************************************************************************/ #include #include // device search algorithm #include "onewire_aux.h" /**********************************************************************//** * @name User configuration **************************************************************************/ /**@{*/ /** UART BAUD rate */ #define BAUD_RATE 19200 /**@}*/ // Constants const char hex_c[16] = {'0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f'}; // Prototypes void show_help(void); void show_1wire_commands(void); void read_byte(void); void write_byte(void); void scan_bus(void); /**********************************************************************//** * Main function * * @note This program requires the ONEWIRE and UART0 modules. Only non-blocking ONEWIRE functions are used. * * @return !=0 if setup error **************************************************************************/ int main() { // capture all exceptions and give debug info via UART0 neorv32_rte_setup(); // setup UART at default baud rate, no interrupts neorv32_uart0_setup(BAUD_RATE, 0); // check if ONEWIRE is implemented at all if (!neorv32_onewire_available()) { neorv32_uart0_printf("Error! ONEWIRE module not synthesized!\n"); return -1; } // intro neorv32_uart0_printf("\n\n<<< NEORV32 1-Wire Interface (ONEWIRE) Demo Program >>>\n\n"); // info neorv32_uart0_printf("ONEWIRE FIFO depth: %u entries\n", neorv32_onewire_get_fifo_depth()); // configure ONEWIRE base time neorv32_uart0_printf("Configuring ONEWIRE time base...\n"); uint32_t t_base_ref = 10000; // reference: t_base = 10000ns = 10us uint32_t t_base_real = neorv32_onewire_setup(t_base_ref); neorv32_uart0_printf("t_base: requested = %u ns\n" " actual value = %u ns\n" " difference = %i ns\n", t_base_ref, t_base_real, ((int)t_base_ref)-((int)t_base_real)); // check bus state - should be high (pulled-high by the pull-up resistor) neorv32_uart0_printf("Checking bus state... "); if (neorv32_onewire_sense() != 0) { // bus high? neorv32_uart0_printf("OK\n"); } else { neorv32_uart0_printf("FAILED! Short circuit? Missing pull-up resistor?\n"); } neorv32_uart0_printf("Starting interactive user console...\n\n"); // show all available commands show_help(); // console loop while(1) { neorv32_uart0_printf("CMD:> "); char cmd = neorv32_uart0_getc(); neorv32_uart0_putc(cmd); // echo neorv32_uart0_printf("\n"); if (cmd == 'h') { show_help(); } else if (cmd == 'c') { show_1wire_commands(); } else if (cmd == 'x') { neorv32_uart0_printf("Sending reset pulse.\n"); if (neorv32_onewire_reset_blocking()) { neorv32_uart0_printf("No presence detected.\n"); } else { neorv32_uart0_printf("Device presence detected!\n"); } } else if (cmd == '0') { neorv32_uart0_printf("Writing 0-bit\n"); neorv32_onewire_write_bit_blocking(0); } else if (cmd == '1') { neorv32_uart0_printf("Writing 1-bit\n"); neorv32_onewire_write_bit_blocking(1); } else if (cmd == 'b') { neorv32_uart0_printf("Read bit = %c\n", '0' + (neorv32_onewire_read_bit_blocking() & 1)); } else if (cmd == 'r') { read_byte(); } else if (cmd == 'w') { write_byte(); } else if (cmd == 'p') { if (neorv32_onewire_sense()) { neorv32_uart0_printf("Bus is HIGH.\n"); } else { neorv32_uart0_printf("Bus is LOW.\n"); } } else if (cmd == 's') { scan_bus(); } else if ((cmd == 10) || (cmd == 13)) { // line break (enter) continue; } else { neorv32_uart0_printf("Invalid command. Type 'h' to see the help menu.\n"); } } return 0; // should never be reached } /**********************************************************************//** * Show help menu. **************************************************************************/ void show_help(void) { neorv32_uart0_printf("Available commands:\n" " h: Show this text\n" " c: Show standard 1-Wire commands\n" " x: Generate reset pulse and check for device presence\n" " 0: Write single '0' bit\n" " 1: Write single '1' bit\n" " b: Read single bit\n" " r: Read full-byte\n" " w: Write full-byte\n" " p: Probe current bus state\n" " s: Scan bus (get IDs from all devices)\n"); } /**********************************************************************//** * Show standard 1-wire commands. **************************************************************************/ void show_1wire_commands(void) { neorv32_uart0_printf("Standard 1-wire command bytes:\n" " 0x33 - Read ROM (for identification)\n" " 0x55 - Match ROM (access specific device)\n" " 0xF0 - Search ROM (for device search algorithm)\n" " 0xCC - Skip ROM (skip addressing)\n" " 0xF5 - PIO read access\n" " 0x5A - PIO write access\n"); } /**********************************************************************//** * Read full byte from bus. **************************************************************************/ void read_byte(void) { int i; uint8_t tmp = neorv32_onewire_read_byte_blocking(); neorv32_uart0_printf("Read byte = 0b"); // print binary for (i=7; i>=0; i--) { if (tmp & (1 << i)) { neorv32_uart0_putc('1'); } else { neorv32_uart0_putc('0'); } } // print hexadecimal neorv32_uart0_printf(" (0x"); neorv32_uart0_putc(hex_c[(tmp >> 4) & 0x0f]); neorv32_uart0_putc(hex_c[(tmp >> 0) & 0x0f]); neorv32_uart0_printf(")\n"); } /**********************************************************************//** * Write full byte to bus. **************************************************************************/ void write_byte(void) { char terminal_buffer[4]; // enter address neorv32_uart0_printf("Enter write data (2 hex chars): 0x"); neorv32_uart0_scan(terminal_buffer, 2+1, 1); // 2 hex chars for address plus '\0' uint8_t wdata = (uint8_t)neorv32_aux_hexstr2uint64(terminal_buffer, strlen(terminal_buffer)); // write to bus neorv32_uart0_printf("\nWriting 0x"); neorv32_uart0_putc(hex_c[(wdata >> 4) & 0x0f]); neorv32_uart0_putc(hex_c[(wdata >> 0) & 0x0f]); neorv32_onewire_write_byte_blocking(wdata); neorv32_uart0_printf("\n"); } /**********************************************************************//** * Scan bus for devices and print IDs. **************************************************************************/ void scan_bus(void) { neorv32_uart0_printf("Scanning bus...\n"); // APPLICATION NOTE 187 "1-Wire Search Algorithm" by Maxim Integrated // modified for the NEORV32 Processor int res, i, cnt; cnt = 0; res = OWFirst(); while (res) { neorv32_uart0_printf(" > Family code: 0x"); neorv32_uart0_putc(hex_c[(ROM_NO[0] >> 4) & 0x0f]); neorv32_uart0_putc(hex_c[(ROM_NO[0] >> 0) & 0x0f]); neorv32_uart0_printf(", ID: "); for (i=6; i>0; i--) { neorv32_uart0_putc('0'); neorv32_uart0_putc('x'); neorv32_uart0_putc(hex_c[(ROM_NO[i] >> 4) & 0x0f]); neorv32_uart0_putc(hex_c[(ROM_NO[i] >> 0) & 0x0f]); if (i != 1) { neorv32_uart0_putc(' '); } } neorv32_uart0_printf(", CRC: 0x"); neorv32_uart0_putc(hex_c[(ROM_NO[7] >> 4) & 0x0f]); neorv32_uart0_putc(hex_c[(ROM_NO[7] >> 0) & 0x0f]); neorv32_uart0_printf("\n"); cnt++; res = OWNext(); } neorv32_uart0_printf("Devices found: %u\n", cnt); }