`default_nettype none module serv_rf_ram_if #(//Data width. Adjust to preferred width of SRAM data interface parameter width=8, parameter W = 1, //Select reset strategy. // "MINI" for resetting minimally required FFs // "NONE" for relying on FFs having a defined value on startup parameter reset_strategy="MINI", //Number of CSR registers. These are allocated after the normal // GPR registers in the RAM. parameter csr_regs=4, //Internal parameters calculated from above values. Do not change parameter B=W-1, parameter raw=$clog2(32+csr_regs), //Register address width parameter l2w=$clog2(width), //log2 of width parameter aw=5+raw-l2w) //Address width ( //SERV side input wire i_clk, input wire i_rst, input wire i_wreq, input wire i_rreq, output wire o_ready, input wire [raw-1:0] i_wreg0, input wire [raw-1:0] i_wreg1, input wire i_wen0, input wire i_wen1, input wire [B:0] i_wdata0, input wire [B:0] i_wdata1, input wire [raw-1:0] i_rreg0, input wire [raw-1:0] i_rreg1, output wire [B:0] o_rdata0, output wire [B:0] o_rdata1, //RAM side output wire [aw-1:0] o_waddr, output wire [width-1:0] o_wdata, output wire o_wen, output wire [aw-1:0] o_raddr, output wire o_ren, input wire [width-1:0] i_rdata); localparam ratio = width/W; localparam CMSB = 4-$clog2(W); //Counter MSB localparam l2r = $clog2(ratio); reg rgnt; assign o_ready = rgnt | i_wreq; reg [CMSB:0] rcnt; reg rtrig1; /* ********** Write side *********** */ wire [CMSB:0] wcnt; reg [width-1:0] wdata0_r; reg [width+W-1:0] wdata1_r; reg wen0_r; reg wen1_r; wire wtrig0; wire wtrig1; assign wtrig0 = rtrig1; generate if (ratio == 2) begin : gen_wtrig_ratio_eq_2 assign wtrig1 = wcnt[0]; end else begin : gen_wtrig_ratio_neq_2 reg wtrig0_r; always @(posedge i_clk) wtrig0_r <= wtrig0; assign wtrig1 = wtrig0_r; end endgenerate assign o_wdata = wtrig1 ? wdata1_r[width-1:0] : wdata0_r; wire [raw-1:0] wreg = wtrig1 ? i_wreg1 : i_wreg0; generate if (width == 32) begin : gen_w_eq_32 assign o_waddr = wreg; end else begin : gen_w_neq_32 assign o_waddr = {wreg, wcnt[CMSB:l2r]}; end endgenerate assign o_wen = (wtrig0 & wen0_r) | (wtrig1 & wen1_r); assign wcnt = rcnt-4; always @(posedge i_clk) begin if (wcnt[0]) begin wen0_r <= i_wen0; wen1_r <= i_wen1; end wdata0_r <= {i_wdata0,wdata0_r[width-1:W]}; wdata1_r <= {i_wdata1,wdata1_r[width+W-1:W]}; end /* ********** Read side *********** */ wire rtrig0; wire [raw-1:0] rreg = rtrig0 ? i_rreg1 : i_rreg0; generate if (width == 32) begin : gen_rreg_eq_32 assign o_raddr = rreg; end else begin : gen_rreg_neq_32 assign o_raddr = {rreg, rcnt[CMSB:l2r]}; end endgenerate reg [width-1:0] rdata0; reg [width-1-W:0] rdata1; reg rgate; assign o_rdata0 = rdata0[B:0]; assign o_rdata1 = rtrig1 ? i_rdata[B:0] : rdata1[B:0]; assign rtrig0 = (rcnt[l2r-1:0] == 1); generate if (ratio == 2) begin : gen_ren_w_eq_2 assign o_ren = rgate; end else begin : gen_ren_w_neq_2 assign o_ren = rgate & (rcnt[l2r-1:1] == 0); end endgenerate reg rreq_r; generate if (ratio > 2) begin : gen_rdata1_w_neq_2 always @(posedge i_clk) begin rdata1 <= {{W{1'b0}},rdata1[width-W-1:W]}; if (rtrig1) rdata1[width-W-1:0] <= i_rdata[width-1:W]; end end else begin : gen_rdata1_w_eq_2 always @(posedge i_clk) if (rtrig1) rdata1 <= i_rdata[W*2-1:W]; end endgenerate always @(posedge i_clk) begin if (&rcnt | i_rreq) rgate <= i_rreq; rtrig1 <= rtrig0; rcnt <= rcnt+{{CMSB{1'b0}},1'b1}; if (i_rreq | i_wreq) rcnt <= {{CMSB-1{1'b0}},i_wreq,1'b0}; rreq_r <= i_rreq; rgnt <= rreq_r; rdata0 <= {{W{1'b0}}, rdata0[width-1:W]}; if (rtrig0) rdata0 <= i_rdata; if (i_rst) begin if (reset_strategy != "NONE") begin rgate <= 1'b0; rgnt <= 1'b0; rreq_r <= 1'b0; rcnt <= {CMSB+1{1'b0}}; end end end endmodule