#include #include #include #include #include #include "common.h" #define FLOAT_ULP 6 #define RT_CHECK(_expr) \ do \ { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// template class Comparator { }; template <> class Comparator { public: static const char *type_str() { return "integer"; } static int generate() { return rand(); } static bool compare(int a, int b, int index, int errors) { if (a != b) { if (errors < 100) { printf("*** error: [%d] expected=%d, actual=%d\n", index, a, b); } return false; } return true; } }; template <> class Comparator { private: union Float_t { float f; int i; }; public: static const char *type_str() { return "float"; } static float generate() { return static_cast(rand()) / RAND_MAX; } static bool compare(float a, float b, int index, int errors) { union fi_t { float f; int32_t i; }; fi_t fa, fb; fa.f = a; fb.f = b; auto d = std::abs(fa.i - fb.i); if (d > FLOAT_ULP) { if (errors < 100) { printf("*** error: [%d] expected=%f, actual=%f\n", index, a, b); } return false; } return true; } }; static void stencil_cpu(TYPE *out, const TYPE *in, uint32_t width, uint32_t height, uint32_t depth) { // We'll need to handle boundary conditions. Let's assume we use boundary replication. for (uint32_t z = 0; z < depth; z++) { for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { TYPE sum = 0; int count = 0; // Iterate over the neighborhood for (int dz = -1; dz <= 1; dz++) { for (int dy = -1; dy <= 1; dy++) { for (int dx = -1; dx <= 1; dx++) { // Compute the neighbor's index int nx = (int)x + dx; int ny = (int)y + dy; int nz = (int)z + dz; // Check bounds and replicate the boundary values if (nx < 0) {nx = 0;} else if (nx >= (int)width) {nx = width - 1;} if (ny < 0) {ny = 0;} else if (ny >= (int)height) {ny = height - 1;} if (nz < 0) {nz = 0;} else if (nz >= (int)depth) {nz = depth - 1;} // Sum up the values sum += in[nz * width * height + ny * width + nx]; count++; } } } // Write the averaged value to the output array out[z * width * height + y * width + x] = sum / count; } } } } const char *kernel_file = "kernel.vxbin"; uint32_t size = 64; uint32_t block_size = 2; vx_device_h device = nullptr; vx_buffer_h A_buffer = nullptr; vx_buffer_h B_buffer = nullptr; vx_buffer_h krnl_buffer = nullptr; vx_buffer_h args_buffer = nullptr; kernel_arg_t kernel_arg = {}; static void show_usage() { std::cout << "Vortex Test." << std::endl; std::cout << "Usage: [-k: kernel] [-n matrix_size] [-b:block_size] [-h: help]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "n:t:k:h")) != -1) { switch (c) { case 'n': size = atoi(optarg); break; case 'b': block_size = atoi(optarg); break; case 'k': kernel_file = optarg; break; case 'h': show_usage(); exit(0); break; default: show_usage(); exit(-1); } } } void cleanup() { if (device) { vx_mem_free(A_buffer); vx_mem_free(B_buffer); vx_mem_free(krnl_buffer); vx_mem_free(args_buffer); vx_dev_close(device); } } int main(int argc, char *argv[]) { // parse command arguments parse_args(argc, argv); if ((size / block_size) * block_size != size) { printf("Error: matrix size %d must be a multiple of block size %d\n", size, block_size); return -1; } std::srand(50); // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); uint32_t size_cubed = size * size * size; uint32_t buf_size = size_cubed * sizeof(TYPE); std::cout << "data type: " << Comparator::type_str() << std::endl; std::cout << "matrix size: " << size << "x" << size << "x" << size << std::endl; std::cout << "block size: " << block_size << "x" << block_size << "x" << block_size << std::endl; kernel_arg.grid_dim[0] = size / block_size; kernel_arg.grid_dim[1] = size / block_size; kernel_arg.grid_dim[2] = size / block_size; kernel_arg.block_dim[0] = block_size; kernel_arg.block_dim[1] = block_size; kernel_arg.block_dim[2] = block_size; kernel_arg.size = size; kernel_arg.block_size = block_size; // allocate device memory std::cout << "allocate device memory" << std::endl; RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_READ, &A_buffer)); RT_CHECK(vx_mem_address(A_buffer, &kernel_arg.A_addr)); RT_CHECK(vx_mem_alloc(device, buf_size, VX_MEM_WRITE, &B_buffer)); RT_CHECK(vx_mem_address(B_buffer, &kernel_arg.B_addr)); std::cout << "A_addr=0x" << std::hex << kernel_arg.A_addr << std::endl; std::cout << "B_addr=0x" << std::hex << kernel_arg.B_addr << std::endl; // allocate host buffers std::cout << "allocate host buffers" << std::endl; std::vector h_A(size_cubed); std::vector h_B(size_cubed); // generate source data for (uint32_t i = 0; i < size_cubed; ++i) { h_A[i] = Comparator::generate(); } // upload source buffer0 std::cout << "upload source buffer0" << std::endl; RT_CHECK(vx_copy_to_dev(A_buffer, h_A.data(), 0, buf_size)); // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer)); // upload kernel argument std::cout << "upload kernel argument" << std::endl; RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer)); // start device std::cout << "start device" << std::endl; RT_CHECK(vx_start(device, krnl_buffer, args_buffer)); // wait for completion std::cout << "wait for completion" << std::endl; RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT)); // download destination buffer std::cout << "download destination buffer" << std::endl; RT_CHECK(vx_copy_from_dev(h_B.data(), B_buffer, 0, buf_size)); // verify result std::cout << "verify result" << std::endl; int errors = 0; { std::vector h_ref(size_cubed); stencil_cpu(h_ref.data(), h_A.data(), size, size, size); for (uint32_t i = 0; i < h_ref.size(); ++i) { if (!Comparator::compare(h_B[i], h_ref[i], i, errors)) { ++errors; } } } // cleanup std::cout << "cleanup" << std::endl; cleanup(); if (errors != 0) { std::cout << "Found " << std::dec << errors << " errors!" << std::endl; std::cout << "FAILED!" << std::endl; return errors; } std::cout << "PASSED!" << std::endl; return 0; }