#include #include #include #include #include "common.h" #include #include #include #include #define RT_CHECK(_expr) \ do { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// union Float_t { float f; int i; struct { uint32_t man : 23; uint32_t exp : 8; uint32_t sign : 1; } parts; }; inline float fround(float x, int32_t precision = 8) { auto power_of_10 = std::pow(10, precision); return std::round(x * power_of_10) / power_of_10; } inline bool almost_equal_eps(float a, float b, int ulp = 128) { auto eps = std::numeric_limits::epsilon() * (std::max(fabs(a), fabs(b)) * ulp); auto d = fabs(a - b); if (d > eps) { std::cout << "*** almost_equal_eps: d=" << d << ", eps=" << eps << std::endl; return false; } return true; } inline bool almost_equal_ulp(float a, float b, int32_t ulp = 6) { Float_t fa{a}, fb{b}; auto d = std::abs(fa.i - fb.i); if (d > ulp) { std::cout << "*** almost_equal_ulp: a=" << a << ", b=" << b << ", ulp=" << d << ", ia=" << std::hex << fa.i << ", ib=" << fb.i << std::endl; return false; } return true; } inline bool almost_equal(float a, float b) { if (a == b) return true; /*if (almost_equal_eps(a, b)) return true;*/ return almost_equal_ulp(a, b); } /////////////////////////////////////////////////////////////////////////////// const char* kernel_file = "kernel.vxbin"; uint32_t count = 0; vx_device_h device = nullptr; vx_buffer_h src0_buffer = nullptr; vx_buffer_h src1_buffer = nullptr; vx_buffer_h dst_buffer = nullptr; vx_buffer_h krnl_buffer = nullptr; vx_buffer_h args_buffer = nullptr; kernel_arg_t kernel_arg = {}; static void show_usage() { std::cout << "Vortex Test." << std::endl; std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "n:k:h")) != -1) { switch (c) { case 'n': count = atoi(optarg); break; case 'k': kernel_file = optarg; break; case 'h': show_usage(); exit(0); break; default: show_usage(); exit(-1); } } } void cleanup() { if (device) { vx_mem_free(src0_buffer); vx_mem_free(src1_buffer); vx_mem_free(dst_buffer); vx_mem_free(krnl_buffer); vx_mem_free(args_buffer); vx_dev_close(device); } } void gen_src_data(std::vector& test_data, std::vector& addr_table, uint32_t num_points, uint32_t num_addrs) { test_data.resize(num_points); addr_table.resize(num_addrs); for (uint32_t i = 0; i < num_points; ++i) { float r = static_cast(std::rand()) / RAND_MAX; test_data[i] = r; } for (uint32_t i = 0; i < num_addrs; ++i) { float r = static_cast(std::rand()) / RAND_MAX; uint32_t index = static_cast(r * num_points); assert(index < num_points); addr_table[i] = index; } } int main(int argc, char *argv[]) { // parse command arguments parse_args(argc, argv); if (count == 0) { count = 1; } std::srand(50); // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); uint64_t num_cores, num_warps, num_threads; RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_CORES, &num_cores)); RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_WARPS, &num_warps)); RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_THREADS, &num_threads)); uint32_t total_threads = num_cores * num_warps * num_threads; uint32_t num_points = count * total_threads; uint32_t num_addrs = num_points + NUM_LOADS - 1; uint32_t addr_buf_size = num_addrs * sizeof(int32_t); uint32_t src_buf_size = num_points * sizeof(int32_t); uint32_t dst_buf_size = num_points * sizeof(int32_t); std::cout << "number of points: " << num_points << std::endl; std::cout << "addr buffer size: " << addr_buf_size << " bytes" << std::endl; std::cout << "src buffer size: " << src_buf_size << " bytes" << std::endl; std::cout << "dst buffer size: " << dst_buf_size << " bytes" << std::endl; kernel_arg.num_tasks = total_threads; kernel_arg.stride = count; // allocate device memory std::cout << "allocate device memory" << std::endl; RT_CHECK(vx_mem_alloc(device, addr_buf_size, VX_MEM_READ, &src0_buffer)); RT_CHECK(vx_mem_address(src0_buffer, &kernel_arg.src0_addr)); RT_CHECK(vx_mem_alloc(device, src_buf_size, VX_MEM_READ, &src1_buffer)); RT_CHECK(vx_mem_address(src1_buffer, &kernel_arg.src1_addr)); RT_CHECK(vx_mem_alloc(device, dst_buf_size, VX_MEM_WRITE, &dst_buffer)); RT_CHECK(vx_mem_address(dst_buffer, &kernel_arg.dst_addr)); std::cout << "dev_addr=0x" << std::hex << kernel_arg.src0_addr << std::endl; std::cout << "dev_src=0x" << std::hex << kernel_arg.src1_addr << std::endl; std::cout << "dev_dst=0x" << std::hex << kernel_arg.dst_addr << std::endl; // allocate host buffers std::cout << "allocate host buffers" << std::endl; std::vector h_addr; std::vector h_src; std::vector h_dst(num_points); gen_src_data(h_src, h_addr, num_points, num_addrs); // upload source buffer0 std::cout << "upload address buffer" << std::endl; RT_CHECK(vx_copy_to_dev(src0_buffer, h_addr.data(), 0, addr_buf_size)); // upload source buffer1 std::cout << "upload source buffer" << std::endl; RT_CHECK(vx_copy_to_dev(src1_buffer, h_src.data(), 0, src_buf_size)); // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer)); // upload kernel argument std::cout << "upload kernel argument" << std::endl; RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer)); // start device std::cout << "start device" << std::endl; RT_CHECK(vx_start(device, krnl_buffer, args_buffer)); // wait for completion std::cout << "wait for completion" << std::endl; RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT)); // download destination buffer std::cout << "download destination buffer" << std::endl; RT_CHECK(vx_copy_from_dev(h_dst.data(), dst_buffer, 0, dst_buf_size)); // verify result std::cout << "verify result" << std::endl; int errors = 0; for (uint32_t i = 0; i < num_points; ++i) { float ref = 0.0f; for (uint32_t j = 0; j < NUM_LOADS; ++j) { uint32_t addr = i + j; uint32_t index = h_addr[addr]; float value = h_src[index]; //printf("*** [%d] addr=%d, index=%d, value=%f\n", i, addr, index, value); ref *= value; } float cur = h_dst[i]; if (!almost_equal(cur, ref)) { std::cout << "error at result #" << std::dec << i << ": actual " << cur << ", expected " << ref << std::endl; ++errors; } } // cleanup std::cout << "cleanup" << std::endl; cleanup(); if (errors != 0) { std::cout << "Found " << std::dec << errors << " errors!" << std::endl; std::cout << "FAILED!" << std::endl; return 1; } std::cout << "PASSED!" << std::endl; return 0; }