#include #include #include #include #include #include #include #include #include "common.h" #include "utils.h" using namespace cocogfx; #define RT_CHECK(_expr) \ do { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// const char* kernel_file = "kernel.bin"; const char* input_file = "palette64.png"; const char* output_file = "output.png"; int wrap = 0; int filter = 0; // 0-> point, 1->bilinear, 2->trilinear float scale = 1.0f; int format = 0; bool use_sw = false; ePixelFormat eformat = FORMAT_A8R8G8B8; vx_device_h device = nullptr; vx_buffer_h buffer = nullptr; kernel_arg_t kernel_arg; static void show_usage() { std::cout << "Vortex Texture Test." << std::endl; std::cout << "Usage: [-k: kernel] [-i image] [-o image] [-s scale] [-w wrap] [-f format] [-g filter] [-z no_hw] [-h: help]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "zi:o:k:w:f:g:s:h?")) != -1) { switch (c) { case 'i': input_file = optarg; break; case 'o': output_file = optarg; break; case 's': scale = std::stof(optarg, NULL); break; case 'w': wrap = std::atoi(optarg); break; case 'z': use_sw = true; break; case 'f': { format = std::atoi(optarg); switch (format) { case 0: eformat = FORMAT_A8R8G8B8; break; case 1: eformat = FORMAT_R5G6B5; break; case 2: eformat = FORMAT_A1R5G5B5; break; case 3: eformat = FORMAT_A4R4G4B4; break; case 4: eformat = FORMAT_A8L8; break; case 5: eformat = FORMAT_L8; break; case 6: eformat = FORMAT_A8; break; default: std::cout << "Error: invalid format: " << format << std::endl; exit(1); } } break; case 'g': filter = std::atoi(optarg); break; case 'k': kernel_file = optarg; break; case 'h': case '?': { show_usage(); exit(0); } break; default: show_usage(); exit(-1); } } } void cleanup() { if (buffer) { vx_buf_free(buffer); } if (device) { vx_mem_free(device, kernel_arg.src_addr); vx_mem_free(device, kernel_arg.dst_addr); vx_dev_close(device); } } int run_test(const kernel_arg_t& kernel_arg, uint32_t buf_size, uint32_t width, uint32_t height, uint32_t bpp) { (void)bpp; auto time_start = std::chrono::high_resolution_clock::now(); // start device std::cout << "start device" << std::endl; RT_CHECK(vx_start(device)); // wait for completion std::cout << "wait for completion" << std::endl; RT_CHECK(vx_ready_wait(device, MAX_TIMEOUT)); auto time_end = std::chrono::high_resolution_clock::now(); double elapsed = std::chrono::duration_cast(time_end - time_start).count(); printf("Elapsed time: %lg ms\n", elapsed); // download destination buffer std::cout << "download destination buffer" << std::endl; RT_CHECK(vx_copy_from_dev(buffer, kernel_arg.dst_addr, buf_size, 0)); std::vector dst_pixels(buf_size); auto buf_ptr = (uint8_t*)vx_host_ptr(buffer); for (uint32_t i = 0; i < buf_size; ++i) { dst_pixels[i] = buf_ptr[i]; } // save output image std::cout << "save output image" << std::endl; //dump_image(dst_pixels, width, height, bpp); RT_CHECK(SaveImage(output_file, FORMAT_A8R8G8B8, dst_pixels, width, height)); return 0; } int main(int argc, char *argv[]) { std::vector src_pixels; std::vector mip_offsets; uint32_t src_width; uint32_t src_height; // parse command arguments parse_args(argc, argv); { std::vector staging; RT_CHECK(LoadImage(input_file, eformat, staging, &src_width, &src_height)); uint32_t src_bpp = GetInfo(eformat).BytePerPixel; //dump_image(staging, src_width, src_height, src_bpp); RT_CHECK(GenerateMipmaps(src_pixels, mip_offsets, staging, eformat, src_width, src_height, src_width * src_bpp)); } // check power of two support if (!ispow2(src_width) || !ispow2(src_height)) { std::cout << "Error: only power of two textures supported: width=" << src_width << ", heigth=" << src_height << std::endl; return -1; } uint32_t src_logwidth = log2ceil(src_width); uint32_t src_logheight = log2ceil(src_height); uint32_t src_bufsize = src_pixels.size(); uint32_t dst_width = (uint32_t)(src_width * scale); uint32_t dst_height = (uint32_t)(src_height * scale); uint32_t dst_bpp = 4; uint32_t dst_bufsize = dst_bpp * dst_width * dst_height; // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); uint64_t max_cores, max_warps, max_threads; RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_CORES, &max_cores)); RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_WARPS, &max_warps)); RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_THREADS, &max_threads)); uint32_t num_tasks = max_cores * max_warps * max_threads; std::cout << "number of tasks: " << std::dec << num_tasks << std::endl; std::cout << "source buffer: width=" << src_width << ", heigth=" << src_height << ", size=" << src_bufsize << " bytes" << std::endl; std::cout << "destination buffer: width=" << dst_width << ", heigth=" << dst_height << ", size=" << dst_bufsize << " bytes" << std::endl; // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file)); // allocate device memory std::cout << "allocate device memory" << std::endl; uint64_t src_addr, dst_addr; RT_CHECK(vx_mem_alloc(device, src_bufsize, &src_addr)); RT_CHECK(vx_mem_alloc(device, dst_bufsize, &dst_addr)); std::cout << "src_addr=0x" << std::hex << src_addr << std::endl; std::cout << "dst_addr=0x" << std::hex << dst_addr << std::endl; // allocate staging shared memory std::cout << "allocate shared memory" << std::endl; uint32_t alloc_size = std::max(sizeof(kernel_arg_t), std::max(src_bufsize, dst_bufsize)); RT_CHECK(vx_buf_alloc(device, alloc_size, &buffer)); // upload kernel argument std::cout << "upload kernel argument" << std::endl; { kernel_arg.use_sw = use_sw; kernel_arg.num_tasks = std::min(num_tasks, dst_height); kernel_arg.format = format; kernel_arg.filter = filter; kernel_arg.wrapu = wrap; kernel_arg.wrapv = wrap; kernel_arg.src_logwidth = src_logwidth; kernel_arg.src_logheight = src_logheight; kernel_arg.src_addr = src_addr; for (uint32_t i = 0; i < mip_offsets.size(); ++i) { assert(i < TEX_LOD_MAX); kernel_arg.mip_offs[i] = mip_offsets.at(i); } kernel_arg.dst_width = dst_width; kernel_arg.dst_height = dst_height; kernel_arg.dst_stride = dst_bpp; kernel_arg.dst_pitch = dst_bpp * dst_width; kernel_arg.dst_addr = dst_addr; auto buf_ptr = (uint8_t*)vx_host_ptr(buffer); memcpy(buf_ptr, &kernel_arg, sizeof(kernel_arg_t)); RT_CHECK(vx_copy_to_dev(buffer, KERNEL_ARG_DEV_MEM_ADDR, sizeof(kernel_arg_t), 0)); } // upload source buffer std::cout << "upload source buffer" << std::endl; { auto buf_ptr = (uint8_t*)vx_host_ptr(buffer); for (uint32_t i = 0; i < src_bufsize; ++i) { buf_ptr[i] = src_pixels[i]; } RT_CHECK(vx_copy_to_dev(buffer, kernel_arg.src_addr, src_bufsize, 0)); } // clear destination buffer std::cout << "clear destination buffer" << std::endl; { auto buf_ptr = (uint32_t*)vx_host_ptr(buffer); for (uint32_t i = 0; i < (dst_bufsize/4); ++i) { buf_ptr[i] = 0xdeadbeef; } RT_CHECK(vx_copy_to_dev(buffer, kernel_arg.dst_addr, dst_bufsize, 0)); } // run tests std::cout << "run tests" << std::endl; RT_CHECK(run_test(kernel_arg, dst_bufsize, dst_width, dst_height, dst_bpp)); // cleanup std::cout << "cleanup" << std::endl; cleanup(); std::cout << "PASSED!" << std::endl; return 0; }