#include #include #include #include #include "common.h" #define RT_CHECK(_expr) \ do { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// const char* kernel_file = "kernel.bin"; uint32_t count = 0; vx_device_h device = nullptr; vx_buffer_h staging_buf = nullptr; kernel_arg_t kernel_arg = {}; static void show_usage() { std::cout << "Vortex Test." << std::endl; std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "n:k:h?")) != -1) { switch (c) { case 'n': count = atoi(optarg); break; case 'k': kernel_file = optarg; break; case 'h': case '?': { show_usage(); exit(0); } break; default: show_usage(); exit(-1); } } } void cleanup() { if (staging_buf) { vx_buf_free(staging_buf); } if (device) { vx_mem_free(device, kernel_arg.src0_addr); vx_mem_free(device, kernel_arg.src1_addr); vx_mem_free(device, kernel_arg.dst_addr); vx_dev_close(device); } } int run_test(const kernel_arg_t& kernel_arg, uint32_t buf_size, uint32_t num_points) { // start device std::cout << "start device" << std::endl; RT_CHECK(vx_start(device)); // wait for completion std::cout << "wait for completion" << std::endl; RT_CHECK(vx_ready_wait(device, MAX_TIMEOUT)); // download destination buffer std::cout << "download destination buffer" << std::endl; RT_CHECK(vx_copy_from_dev(staging_buf, kernel_arg.dst_addr, buf_size, 0)); // verify result std::cout << "verify result" << std::endl; { int errors = 0; auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf); for (uint32_t i = 0; i < num_points; ++i) { int ref = i + i; int cur = buf_ptr[i]; if (cur != ref) { std::cout << "error at result #" << std::dec << i << std::hex << ": actual 0x" << cur << ", expected 0x" << ref << std::endl; ++errors; } } if (errors != 0) { std::cout << "Found " << std::dec << errors << " errors!" << std::endl; std::cout << "FAILED!" << std::endl; return 1; } } return 0; } int main(int argc, char *argv[]) { // parse command arguments parse_args(argc, argv); if (count == 0) { count = 1; } // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); uint64_t num_clusters, num_cores_per_cluster, num_warps, num_threads; RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_CLUSTERS, &num_clusters)); RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_CORES, &num_cores_per_cluster)); RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_WARPS, &num_warps)); RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_THREADS, &num_threads)); auto num_cores = num_clusters * num_cores_per_cluster; uint32_t num_tasks = num_cores * num_warps * num_threads; uint32_t num_points = count * num_tasks; uint32_t buf_size = num_points * sizeof(int32_t); std::cout << "number of points: " << num_points << std::endl; std::cout << "buffer size: " << buf_size << " bytes" << std::endl; // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file)); // allocate device memory std::cout << "allocate device memory" << std::endl; RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.src0_addr)); RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.src1_addr)); RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.dst_addr)); kernel_arg.num_tasks = num_tasks; kernel_arg.task_size = count; std::cout << "dev_src0=" << std::hex << kernel_arg.src0_addr << std::endl; std::cout << "dev_src1=" << std::hex << kernel_arg.src1_addr << std::endl; std::cout << "dev_dst=" << std::hex << kernel_arg.dst_addr << std::endl; // allocate staging buffer std::cout << "allocate staging buffer" << std::endl; uint32_t alloc_size = std::max(buf_size, sizeof(kernel_arg_t)); RT_CHECK(vx_buf_alloc(device, alloc_size, &staging_buf)); // upload kernel argument std::cout << "upload kernel argument" << std::endl; { auto buf_ptr = (int*)vx_host_ptr(staging_buf); memcpy(buf_ptr, &kernel_arg, sizeof(kernel_arg_t)); RT_CHECK(vx_copy_to_dev(staging_buf, KERNEL_ARG_DEV_MEM_ADDR, sizeof(kernel_arg_t), 0)); } // upload source buffer0 { std::cout << "upload source buffer0" << std::endl; auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf); for (uint32_t i = 0; i < num_points; ++i) { buf_ptr[i] = i-1; } RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.src0_addr, buf_size, 0)); } // upload source buffer1 { std::cout << "upload source buffer1" << std::endl; auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf); for (uint32_t i = 0; i < num_points; ++i) { buf_ptr[i] = i+1; } RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.src1_addr, buf_size, 0)); } // clear destination buffer { std::cout << "clear destination buffer" << std::endl; auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf); for (uint32_t i = 0; i < num_points; ++i) { buf_ptr[i] = 0xdeadbeef; } RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.dst_addr, buf_size, 0)); } // run tests std::cout << "run tests" << std::endl; RT_CHECK(run_test(kernel_arg, buf_size, num_points)); // cleanup std::cout << "cleanup" << std::endl; cleanup(); std::cout << "PASSED!" << std::endl; return 0; }