#include #include #include #include #include #include "common.h" #define RT_CHECK(_expr) \ do { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// const char* kernel_file = "kernel.bin"; uint32_t count = 0; std::vector src_data; std::vector ref_data; vx_device_h device = nullptr; vx_buffer_h staging_buf = nullptr; kernel_arg_t kernel_arg; static void show_usage() { std::cout << "Vortex Test." << std::endl; std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "n:k:h?")) != -1) { switch (c) { case 'n': count = atoi(optarg); break; case 'k': kernel_file = optarg; break; case 'h': case '?': { show_usage(); exit(0); } break; default: show_usage(); exit(-1); } } } void cleanup() { if (staging_buf) { vx_buf_free(staging_buf); } if (device) { vx_mem_free(device, kernel_arg.src_addr); vx_mem_free(device, kernel_arg.dst_addr); vx_dev_close(device); } } void gen_input_data(uint32_t num_points) { src_data.resize(num_points); for (uint32_t i = 0; i < src_data.size(); ++i) { int value = std::rand(); src_data[i] = value; //std::cout << std::dec << i << ": value=0x" << std::hex << value << std::endl; } } void gen_ref_data(uint32_t num_points) { ref_data.resize(num_points); for (int i = 0; i < (int)ref_data.size(); ++i) { int value = src_data.at(i); // none taken if (i >= 0x7fffffff) { value = 0; } else { value += 2; } // diverge if (i > 1) { if (i > 2) { value += 6; } else { value += 5; } } else { if (i > 0) { value += 4; } else { value += 3; } } // all taken if (i >= 0) { value += 7; } else { value = 0; } ref_data[i] = value; //std::cout << std::dec << i << ": result=0x" << std::hex << value << std::endl; } } int run_test(const kernel_arg_t& kernel_arg, uint32_t buf_size, uint32_t num_points) { // start device std::cout << "start device" << std::endl; RT_CHECK(vx_start(device)); // wait for completion std::cout << "wait for completion" << std::endl; RT_CHECK(vx_ready_wait(device, MAX_TIMEOUT)); // download destination buffer std::cout << "download destination buffer" << std::endl; RT_CHECK(vx_copy_from_dev(staging_buf, kernel_arg.dst_addr, buf_size, 0)); // verify result std::cout << "verify result" << std::endl; { int errors = 0; auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf); for (uint32_t i = 0; i < num_points; ++i) { int ref = ref_data.at(i); int cur = buf_ptr[i]; if (cur != ref) { std::cout << "error at result #" << std::dec << i << std::hex << ": actual 0x" << cur << ", expected 0x" << ref << std::endl; ++errors; } } if (errors != 0) { std::cout << "Found " << std::dec << errors << " errors!" << std::endl; std::cout << "FAILED!" << std::endl; return 1; } } return 0; } int main(int argc, char *argv[]) { size_t value; // parse command arguments parse_args(argc, argv); if (count == 0) { count = 1; } std::srand(50); // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); uint32_t num_points = count; // generate input data gen_input_data(num_points); // generate reference data gen_ref_data(num_points); uint32_t src_buf_size = src_data.size() * sizeof(int32_t); uint32_t dst_buf_size = ref_data.size() * sizeof(int32_t); std::cout << "number of points: " << num_points << std::endl; std::cout << "buffer size: " << dst_buf_size << " bytes" << std::endl; // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file)); // allocate device memory std::cout << "allocate device memory" << std::endl; RT_CHECK(vx_mem_alloc(device, src_buf_size, &value)); kernel_arg.src_addr = value; RT_CHECK(vx_mem_alloc(device, dst_buf_size, &value)); kernel_arg.dst_addr = value; kernel_arg.num_points = num_points; std::cout << "dev_src=" << std::hex << kernel_arg.src_addr << std::endl; std::cout << "dev_dst=" << std::hex << kernel_arg.dst_addr << std::endl; // allocate shared memory std::cout << "allocate shared memory" << std::endl; uint32_t staging_buf_size = std::max(src_buf_size, std::max(dst_buf_size, sizeof(kernel_arg_t))); RT_CHECK(vx_buf_alloc(device, staging_buf_size, &staging_buf)); // upload kernel argument std::cout << "upload kernel argument" << std::endl; { auto buf_ptr = (int*)vx_host_ptr(staging_buf); memcpy(buf_ptr, &kernel_arg, sizeof(kernel_arg_t)); RT_CHECK(vx_copy_to_dev(staging_buf, KERNEL_ARG_DEV_MEM_ADDR, sizeof(kernel_arg_t), 0)); } // upload source buffer { auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf); for (uint32_t i = 0; i < num_points; ++i) { buf_ptr[i] = src_data.at(i); } } std::cout << "upload source buffer" << std::endl; RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.src_addr, src_buf_size, 0)); // clear destination buffer { auto buf_ptr = (int32_t*)vx_host_ptr(staging_buf); for (uint32_t i = 0; i < num_points; ++i) { buf_ptr[i] = 0xdeadbeef; } } std::cout << "clear destination buffer" << std::endl; RT_CHECK(vx_copy_to_dev(staging_buf, kernel_arg.dst_addr, dst_buf_size, 0)); // run tests std::cout << "run tests" << std::endl; RT_CHECK(run_test(kernel_arg, dst_buf_size, num_points)); // cleanup std::cout << "cleanup" << std::endl; cleanup(); std::cout << "PASSED!" << std::endl; return 0; }