#include #include #include #include #include #include #include #include "common.h" #define FLOAT_ULP 6 #define RT_CHECK(_expr) \ do { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// template class Comparator {}; template <> class Comparator { public: static const char* type_str() { return "integer"; } static int generate() { return rand(); } static bool compare(int a, int b, int index, int errors) { if (a != b) { if (errors < 100) { printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a); } return false; } return true; } }; template <> class Comparator { public: static const char* type_str() { return "float"; } static float generate() { return static_cast(rand()) / RAND_MAX; } static bool compare(float a, float b, int index, int errors) { union fi_t { float f; int32_t i; }; fi_t fa, fb; fa.f = a; fb.f = b; auto d = std::abs(fa.i - fb.i); if (d > FLOAT_ULP) { if (errors < 100) { printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a); } return false; } return true; } }; static void convolution_cpu(TYPE *O, TYPE *I, TYPE *W, int32_t width, int32_t height) { int paddedWidth = width + 2; for (int32_t y = 0; y < height; ++y) { for (int32_t x = 0; x < width; ++x) { int paddedY = y + 1; int paddedX = x + 1; TYPE sum(0); for (int32_t ky = -1; ky <= 1; ++ky) { for (int32_t kx = -1; kx <= 1; ++kx) { int32_t iy = paddedY + ky; int32_t ix = paddedX + kx; TYPE value = I[iy * paddedWidth + ix]; TYPE weight = W[(ky + 1) * 3 + (kx + 1)]; sum += value * weight; } } O[y * width + x] = sum; } } } const char* kernel_file = "kernel.vxbin"; int size = 32; bool use_lmem = false; vx_device_h device = nullptr; vx_buffer_h I_buffer = nullptr; vx_buffer_h W_buffer = nullptr; vx_buffer_h O_buffer = nullptr; vx_buffer_h krnl_buffer = nullptr; vx_buffer_h args_buffer = nullptr; kernel_arg_t kernel_arg = {}; static void show_usage() { std::cout << "Vortex Test." << std::endl; std::cout << "Usage: [-k kernel] [-l: local memory] [-n size] [-h|?: help]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "n:k:lh")) != -1) { switch (c) { case 'n': size = atoi(optarg); break; case 'l': use_lmem = true; break; case 'k': kernel_file = optarg; break; case 'h': show_usage(); exit(0); break; default: show_usage(); exit(-1); } } } void cleanup() { if (device) { vx_mem_free(I_buffer); vx_mem_free(W_buffer); vx_mem_free(O_buffer); vx_mem_free(krnl_buffer); vx_mem_free(args_buffer); vx_dev_close(device); } } int main(int argc, char *argv[]) { // parse command arguments parse_args(argc, argv); std::srand(50); // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); std::cout << "data type: " << Comparator::type_str() << std::endl; std::cout << "matrix size: " << size << "x" << size << std::endl; kernel_arg.grid_dim[0] = size; kernel_arg.grid_dim[1] = size; kernel_arg.width = size; kernel_arg.use_lmem = use_lmem; uint32_t o_points = size * size; uint32_t i_points = (size+2) * (size+2); uint32_t w_points = 3 * 3; // allocate device memory std::cout << "allocate device memory" << std::endl; size_t i_nbytes = i_points * sizeof(TYPE); size_t w_nbytes = w_points * sizeof(TYPE); size_t o_nbytes = o_points * sizeof(TYPE); RT_CHECK(vx_mem_alloc(device, i_nbytes, VX_MEM_READ, &I_buffer)); RT_CHECK(vx_mem_address(I_buffer, &kernel_arg.I_addr)); RT_CHECK(vx_mem_alloc(device, w_nbytes, VX_MEM_READ, &W_buffer)); RT_CHECK(vx_mem_address(W_buffer, &kernel_arg.W_addr)); RT_CHECK(vx_mem_alloc(device, o_nbytes, VX_MEM_WRITE, &O_buffer)); RT_CHECK(vx_mem_address(O_buffer, &kernel_arg.O_addr)); if (use_lmem) { uint64_t dev_local_mem_size; RT_CHECK(vx_dev_caps(device, VX_CAPS_LOCAL_MEM_SIZE, &dev_local_mem_size)); if (w_nbytes > dev_local_mem_size) { std::cout << "Error: Not enough local memory: needed=" << w_nbytes << ", available=" << dev_local_mem_size << std::endl; cleanup(); exit(1); } } std::cout << "dev_argI=0x" << std::hex << kernel_arg.I_addr << std::endl; std::cout << "dev_argW=0x" << std::hex << kernel_arg.W_addr << std::endl; std::cout << "dev_argO=0x" << std::hex << kernel_arg.O_addr << std::endl; // Generate input values std::vector h_I(i_points); std::vector h_W(w_points); std::vector h_O(o_points); for (int32_t y = -1; y < size+1; ++y) { for (int32_t x = -1; x < size+1; ++x) { if (x >= 0 && x < size && y >= 0 && y < size) { h_I[(y+1) * (size+2) + (x+1)] = static_cast(rand()) / RAND_MAX; } else { h_I[(y+1) * (size+2) + (x+1)] = 0; } } } for (uint32_t i = 0; i < w_points; ++i) { h_W[i] = static_cast(rand()) / RAND_MAX; } // upload input buffer { std::cout << "upload source buffer" << std::endl; RT_CHECK(vx_copy_to_dev(I_buffer, h_I.data(), 0, i_nbytes)); } // upload weight buffer { std::cout << "upload weight buffer" << std::endl; RT_CHECK(vx_copy_to_dev(W_buffer, h_W.data(), 0, w_nbytes)); } // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer)); // upload kernel argument std::cout << "upload kernel argument" << std::endl; RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer)); auto time_start = std::chrono::high_resolution_clock::now(); // start device std::cout << "start device" << std::endl; RT_CHECK(vx_start(device, krnl_buffer, args_buffer)); // wait for completion std::cout << "wait for completion" << std::endl; RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT)); auto time_end = std::chrono::high_resolution_clock::now(); double elapsed = std::chrono::duration_cast(time_end - time_start).count(); printf("Elapsed time: %lg ms\n", elapsed); // download destination buffer std::cout << "download destination buffer" << std::endl; RT_CHECK(vx_copy_from_dev(h_O.data(), O_buffer, 0, o_nbytes)); // verify result std::cout << "verify result" << std::endl; int errors = 0; { std::vector h_ref(o_points); convolution_cpu(h_ref.data(), h_I.data(), h_W.data(), size, size); for (uint32_t i = 0; i < h_ref.size(); ++i) { auto ref = h_ref[i]; auto cur = h_O[i]; if (!Comparator::compare(cur, ref, i, errors)) { ++errors; } } } // cleanup std::cout << "cleanup" << std::endl; cleanup(); if (errors != 0) { std::cout << "Found " << std::dec << errors << " errors!" << std::endl; std::cout << "FAILED!" << std::endl; return errors; } std::cout << "PASSED!" << std::endl; return 0; }