#include #include #include #include #include #include "common.h" #define FLOAT_ULP 6 #define RT_CHECK(_expr) \ do { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// template class Comparator {}; template <> class Comparator { public: static const char* type_str() { return "integer"; } static int generate() { return rand(); } static bool compare(int a, int b, int index, int errors) { if (a != b) { if (errors < 100) { printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a); } return false; } return true; } }; template <> class Comparator { private: union Float_t { float f; int i; }; public: static const char* type_str() { return "float"; } static int generate() { return static_cast(rand()) / RAND_MAX; } static bool compare(float a, float b, int index, int errors) { union fi_t { float f; int32_t i; }; fi_t fa, fb; fa.f = a; fb.f = b; auto d = std::abs(fa.i - fb.i); if (d > FLOAT_ULP) { if (errors < 100) { printf("*** error: [%d] expected=%f(0x%x), actual=%f(0x%x), ulp=%d\n", index, b, fb.i, a, fa.i, d); } return false; } return true; } }; const char* kernel_file = "kernel.bin"; uint32_t count = 16; vx_device_h device = nullptr; std::vector source_data; std::vector staging_buf; uint64_t kernel_prog_addr; uint64_t kernel_args_addr; kernel_arg_t kernel_arg = {}; static void show_usage() { std::cout << "Vortex Test." << std::endl; std::cout << "Usage: [-k: kernel] [-n words] [-h: help]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "n:k:h?")) != -1) { switch (c) { case 'n': count = atoi(optarg); break; case 'k': kernel_file = optarg; break; case 'h': case '?': { show_usage(); exit(0); } break; default: show_usage(); exit(-1); } } } void cleanup() { if (device) { vx_mem_free(device, kernel_arg.src0_addr); vx_mem_free(device, kernel_arg.src1_addr); vx_mem_free(device, kernel_arg.dst_addr); vx_mem_free(device, kernel_prog_addr); vx_mem_free(device, kernel_args_addr); vx_dev_close(device); } } int main(int argc, char *argv[]) { // parse command arguments parse_args(argc, argv); std::srand(50); // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); uint64_t num_cores, num_warps, num_threads; RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_CORES, &num_cores)); RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_WARPS, &num_warps)); RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_THREADS, &num_threads)); uint32_t num_tasks = num_cores * num_warps * num_threads; uint32_t num_points = count * num_tasks; uint32_t buf_size = num_points * sizeof(TYPE); std::cout << "data type: " << Comparator::type_str() << std::endl; std::cout << "number of points: " << num_points << std::endl; std::cout << "buffer size: " << buf_size << " bytes" << std::endl; // allocate device memory std::cout << "allocate device memory" << std::endl; RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.src0_addr)); RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.src1_addr)); RT_CHECK(vx_mem_alloc(device, buf_size, &kernel_arg.dst_addr)); kernel_arg.num_tasks = num_tasks; kernel_arg.task_size = count; std::cout << "dev_src0=0x" << std::hex << kernel_arg.src0_addr << std::endl; std::cout << "dev_src1=0x" << std::hex << kernel_arg.src1_addr << std::endl; std::cout << "dev_dst=0x" << std::hex << kernel_arg.dst_addr << std::endl; // allocate staging buffer std::cout << "allocate staging buffer" << std::endl; staging_buf.resize(buf_size); // generate source data source_data.resize(2 * num_points); for (uint32_t i = 0; i < source_data.size(); ++i) { source_data[i] = Comparator::generate(); } // upload source buffer0 { std::cout << "upload source buffer0" << std::endl; auto buf_ptr = (TYPE*)staging_buf.data(); for (uint32_t i = 0; i < num_points; ++i) { buf_ptr[i] = source_data[2 * i + 0]; } RT_CHECK(vx_copy_to_dev(device, kernel_arg.src0_addr, staging_buf.data(), buf_size)); } // upload source buffer1 { std::cout << "upload source buffer1" << std::endl; auto buf_ptr = (TYPE*)staging_buf.data(); for (uint32_t i = 0; i < num_points; ++i) { buf_ptr[i] = source_data[2 * i + 1]; } RT_CHECK(vx_copy_to_dev(device, kernel_arg.src1_addr, staging_buf.data(), buf_size)); } // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file, &kernel_prog_addr)); // upload kernel argument std::cout << "upload kernel argument" << std::endl; RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &kernel_args_addr)); // start device std::cout << "start device" << std::endl; RT_CHECK(vx_start(device, kernel_prog_addr, kernel_args_addr)); // wait for completion std::cout << "wait for completion" << std::endl; RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT)); // download destination buffer std::cout << "download destination buffer" << std::endl; RT_CHECK(vx_copy_from_dev(device, staging_buf.data(), kernel_arg.dst_addr, buf_size)); // verify result std::cout << "verify result" << std::endl; { int errors = 0; auto buf_ptr = (TYPE*)staging_buf.data(); for (uint32_t i = 0; i < num_points; ++i) { auto ref = source_data[2 * i + 0] + source_data[2 * i + 1]; auto cur = buf_ptr[i]; if (!Comparator::compare(cur, ref, i, errors)) { ++errors; } } if (errors != 0) { std::cout << "Found " << std::dec << errors << " errors!" << std::endl; std::cout << "FAILED!" << std::endl; return 1; } } // cleanup std::cout << "cleanup" << std::endl; cleanup(); std::cout << "PASSED!" << std::endl; return 0; }