#include #include #include #include #include #include "common.h" #define RT_CHECK(_expr) \ do { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// const char* kernel_file = "kernel.bin"; int test = -1; uint32_t count = 0; vx_device_h device = nullptr; vx_buffer_h buffer = nullptr; static void show_usage() { std::cout << "Vortex Driver Test." << std::endl; std::cout << "Usage: [-t testno][-k: kernel][-n words][-h: help]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "n:t:k:h?")) != -1) { switch (c) { case 'n': count = atoi(optarg); break; case 't': test = atoi(optarg); break; case 'k': kernel_file = optarg; break; case 'h': case '?': { show_usage(); exit(0); } break; default: show_usage(); exit(-1); } } } void cleanup() { if (buffer) { vx_buf_release(buffer); } if (device) { vx_dev_close(device); } } uint64_t shuffle(int i, uint64_t value) { return (value << i) | (value & ((1 << i)-1));; } int run_memcopy_test(uint32_t dev_addr, uint64_t value, int num_blocks) { int errors = 0; auto time_start = std::chrono::high_resolution_clock::now(); int num_blocks_8 = (64 * num_blocks) / 8; // update source buffer for (int i = 0; i < num_blocks_8; ++i) { ((uint64_t*)vx_host_ptr(buffer))[i] = shuffle(i, value); } /*for (int i = 0; i < num_blocks; ++i) { std::cout << "data[" << i << "]=0x"; for (int j = 7; j >= 0; --j) { std::cout << std::hex << ((uint64_t*)vx_host_ptr(buffer))[i * 8 +j]; } std::cout << std::endl; }*/ // write buffer to local memory std::cout << "write buffer to local memory" << std::endl; auto t0 = std::chrono::high_resolution_clock::now(); RT_CHECK(vx_copy_to_dev(buffer, dev_addr, 64 * num_blocks, 0)); auto t1 = std::chrono::high_resolution_clock::now(); // clear destination buffer for (int i = 0; i < num_blocks_8; ++i) { ((uint64_t*)vx_host_ptr(buffer))[i] = 0; } // read buffer from local memory std::cout << "read buffer from local memory" << std::endl; auto t2 = std::chrono::high_resolution_clock::now(); RT_CHECK(vx_copy_from_dev(buffer, dev_addr, 64 * num_blocks, 0)); auto t3 = std::chrono::high_resolution_clock::now(); // verify result std::cout << "verify result" << std::endl; for (int i = 0; i < num_blocks_8; ++i) { auto curr = ((uint64_t*)vx_host_ptr(buffer))[i]; auto ref = shuffle(i, value); if (curr != ref) { std::cout << "error at 0x" << std::hex << (dev_addr + 8 * i) << ": actual 0x" << curr << ", expected 0x" << ref << std::endl; ++errors; } } if (errors != 0) { std::cout << "Found " << std::dec << errors << " errors!" << std::endl; std::cout << "FAILED!" << std::endl; return 1; } auto time_end = std::chrono::high_resolution_clock::now(); double elapsed; elapsed = std::chrono::duration_cast(t1 - t0).count(); printf("upload time: %lg ms\n", elapsed); elapsed = std::chrono::duration_cast(t3 - t2).count(); printf("download time: %lg ms\n", elapsed); elapsed = std::chrono::duration_cast(time_end - time_start).count(); printf("Total elapsed time: %lg ms\n", elapsed); return 0; } int run_kernel_test(const kernel_arg_t& kernel_arg, uint32_t buf_size, uint32_t num_points) { int errors = 0; auto time_start = std::chrono::high_resolution_clock::now(); // update source buffer { auto buf_ptr = (int32_t*)vx_host_ptr(buffer); for (uint32_t i = 0; i < num_points; ++i) { buf_ptr[i] = i; } } std::cout << "upload source buffer" << std::endl; auto t0 = std::chrono::high_resolution_clock::now(); RT_CHECK(vx_copy_to_dev(buffer, kernel_arg.src_ptr, buf_size, 0)); auto t1 = std::chrono::high_resolution_clock::now(); // clear destination buffer { auto buf_ptr = (int32_t*)vx_host_ptr(buffer); for (uint32_t i = 0; i < num_points; ++i) { buf_ptr[i] = 0xdeadbeef; } } std::cout << "clear destination buffer" << std::endl; RT_CHECK(vx_copy_to_dev(buffer, kernel_arg.dst_ptr, buf_size, 0)); // start device std::cout << "start execution" << std::endl; auto t2 = std::chrono::high_resolution_clock::now(); RT_CHECK(vx_start(device)); RT_CHECK(vx_ready_wait(device, -1)); auto t3 = std::chrono::high_resolution_clock::now(); // read buffer from local memory std::cout << "read buffer from local memory" << std::endl; auto t4 = std::chrono::high_resolution_clock::now(); RT_CHECK(vx_copy_from_dev(buffer, kernel_arg.dst_ptr, buf_size, 0)); auto t5 = std::chrono::high_resolution_clock::now(); // verify result std::cout << "verify result" << std::endl; for (uint32_t i = 0; i < num_points; ++i) { int32_t curr = ((int32_t*)vx_host_ptr(buffer))[i]; int32_t ref = i; if (curr != ref) { std::cout << "error at result #" << i << ": actual 0x" << curr << ", expected 0x" << ref << std::endl; ++errors; } } if (errors != 0) { std::cout << "Found " << std::dec << errors << " errors!" << std::endl; std::cout << "FAILED!" << std::endl; return 1; } auto time_end = std::chrono::high_resolution_clock::now(); double elapsed; elapsed = std::chrono::duration_cast(t1 - t0).count(); printf("upload time: %lg ms\n", elapsed); elapsed = std::chrono::duration_cast(t3 - t2).count(); printf("execute time: %lg ms\n", elapsed); elapsed = std::chrono::duration_cast(t5 - t4).count(); printf("download time: %lg ms\n", elapsed); elapsed = std::chrono::duration_cast(time_end - time_start).count(); printf("Total elapsed time: %lg ms\n", elapsed); return 0; } int main(int argc, char *argv[]) { size_t value; kernel_arg_t kernel_arg; // parse command arguments parse_args(argc, argv); if (count == 0) { count = 1; } // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); unsigned max_cores; RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_CORES, &max_cores)); uint32_t num_points = 1 * count; uint32_t num_blocks = (num_points * sizeof(uint32_t) + 63) / 64; uint32_t buf_size = num_blocks * 64; std::cout << "number of points: " << num_points << std::endl; std::cout << "buffer size: " << buf_size << " bytes" << std::endl; // allocate device memory RT_CHECK(vx_alloc_dev_mem(device, buf_size, &value)); kernel_arg.src_ptr = value; RT_CHECK(vx_alloc_dev_mem(device, buf_size, &value)); kernel_arg.dst_ptr = value; kernel_arg.count = count; std::cout << "dev_src=" << std::hex << kernel_arg.src_ptr << std::endl; std::cout << "dev_dst=" << std::hex << kernel_arg.dst_ptr << std::endl; // allocate shared memory std::cout << "allocate shared memory" << std::endl; uint32_t alloc_size = std::max(buf_size, sizeof(kernel_arg_t)); RT_CHECK(vx_alloc_shared_mem(device, alloc_size, &buffer)); // run tests if (0 == test || -1 == test) { std::cout << "run memcopy test" << std::endl; RT_CHECK(run_memcopy_test(kernel_arg.src_ptr, 0x0badf00d40ff40ff, num_blocks)); } if (1 == test || -1 == test) { // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file)); // upload kernel argument std::cout << "upload kernel argument" << std::endl; { auto buf_ptr = (void*)vx_host_ptr(buffer); memcpy(buf_ptr, &kernel_arg, sizeof(kernel_arg_t)); RT_CHECK(vx_copy_to_dev(buffer, KERNEL_ARG_DEV_MEM_ADDR, sizeof(kernel_arg_t), 0)); } std::cout << "run kernel test" << std::endl; RT_CHECK(run_kernel_test(kernel_arg, buf_size, num_points)); } // cleanup std::cout << "cleanup" << std::endl; cleanup(); std::cout << "Test PASSED" << std::endl; return 0; }