#include #include #include #include #include #include #include #include "common.h" #include #define FLOAT_ULP 6 #define RT_CHECK(_expr) \ do { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// template class Comparator {}; template <> class Comparator { public: static const char* type_str() { return "int8"; } static int8_t generate() { return (int8_t)rand(); } static bool compare(int a, int b, int index, int errors) { if (a != b) { if (errors < 100) { printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a); } return false; } return true; } }; template <> class Comparator { public: static const char* type_str() { return "int8"; } static int generate() { return (int)rand(); } static bool compare(int a, int b, int index, int errors) { if (a != b) { if (errors < 100) { printf("*** error: [%d] expected=%d, actual=%d\n", index, b, a); } return false; } return true; } }; template <> class Comparator { public: static const char* type_str() { return "f16"; } static vortex::half_t generate() { return static_cast(float(rand()) / RAND_MAX); } static bool compare(float a, float b, int index, int errors) { union fi_t { float f; int32_t i; }; fi_t fa, fb; fa.f = a; fb.f = b; auto d = std::abs(fa.i - fb.i); if (d > FLOAT_ULP) { if (errors < 100) { printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a); } return false; } return true; } }; template <> class Comparator { public: static const char* type_str() { return "float"; } static int generate() { return static_cast(rand()) / RAND_MAX; } static bool compare(float a, float b, int index, int errors) { union fi_t { float f; int32_t i; }; fi_t fa, fb; fa.f = a; fb.f = b; auto d = std::abs(fa.i - fb.i); if (d > FLOAT_ULP) { if (errors < 100) { printf("*** error: [%d] expected=%f, actual=%f\n", index, b, a); } return false; } return true; } }; static void matmul_cpu(O_TYPE* C, const I_TYPE* A, const I_TYPE* B, uint32_t M, uint32_t N, uint32_t K) { for (uint32_t m = 0; m < M; ++m) { for (uint32_t n = 0; n < N; ++n) { O_TYPE sum(0); for (uint32_t k = 0; k < K; ++k) { sum += O_TYPE(A[m*K + k] * B[k*N + n]); } C[m*N + n] = sum; } } } const char* kernel_file = "kernel.vxbin"; uint32_t M = 32; uint32_t N = 32; uint32_t K = 32; vx_device_h device = nullptr; vx_buffer_h A_buffer = nullptr; vx_buffer_h B_buffer = nullptr; vx_buffer_h C_buffer = nullptr; vx_buffer_h krnl_buffer = nullptr; vx_buffer_h args_buffer = nullptr; kernel_arg_t kernel_arg = {}; static void show_usage() { std::cout << "Vortex Test." << std::endl; std::cout << "Usage: [-m: m] [-n N] [-k: K] [-h: help]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "m:n:k:h")) != -1) { switch (c) { case 'm': M = atoi(optarg); break; case 'n': N = atoi(optarg); break; case 'k': K = atoi(optarg); break; case 'h': show_usage(); exit(0); break; default: show_usage(); exit(-1); } } } void cleanup() { if (device) { vx_mem_free(A_buffer); vx_mem_free(B_buffer); vx_mem_free(C_buffer); vx_mem_free(krnl_buffer); vx_mem_free(args_buffer); vx_dev_close(device); } } int main(int argc, char *argv[]) { // parse command arguments parse_args(argc, argv); std::srand(50); // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); uint64_t NT; RT_CHECK(vx_dev_caps(device, VX_CAPS_NUM_THREADS, &NT)); std::cout << "GPU warp size: " << NT << std::endl; uint64_t isa_flags; RT_CHECK(vx_dev_caps(device, VX_CAPS_ISA_FLAGS, &isa_flags)); uint32_t XlenB = 4 * VX_ISA_ARCH(isa_flags); std::cout << "GPU XLEN: " << 8 * XlenB << std::endl; // tile format ratio uint32_t o_ratio = XlenB / sizeof(O_TYPE); uint32_t i_ratio = XlenB / sizeof(I_TYPE); // determine tensor tile size uint32_t logNT = log2(NT); uint32_t tileM = 4 * (1 << (logNT / 2)) * o_ratio; uint32_t tileN = (logNT % 2 == 0) ? tileM / 2 : tileN; uint32_t tileK = std::min(tileM, tileN) * i_ratio; std::cout << "GPU tensor tileM=" << tileM << ", tileN=" << tileM << ", tileK=" << tileM << std::endl; if ((M & (tileM - 1)) != 0) { std::cout << "Error: M must be a multiple of tensor tileM!" << std::endl; return -1; } if ((N & (tileN - 1)) != 0) { std::cout << "Error: M must be a multiple of tensor tileN!" << std::endl; return -1; } if ((K & (tileK - 1)) != 0) { std::cout << "Error: M must be a multiple of tensor tileK!" << std::endl; return -1; } kernel_arg.tileM = tileM; kernel_arg.tileN = tileN; kernel_arg.tileK = tileK; size_t sizeA = M * K; size_t sizeB = K * N; size_t sizeC = M * N; std::cout << "input data type: " << Comparator::type_str() << std::endl; std::cout << "output data type: " << Comparator::type_str() << std::endl; std::cout << "matrix A: " << M << "x" << K << std::endl; std::cout << "matrix B: " << K << "x" << N << std::endl; std::cout << "matrix C: " << M << "x" << N << std::endl; // set block size to warp size kernel_arg.grid_dim[0] = N / tileN; kernel_arg.grid_dim[1] = M / tileM; kernel_arg.block_dim[0] = NT; // warp size kernel_arg.block_dim[1] = 1; // set matrix dimensions kernel_arg.M = M; kernel_arg.N = N; kernel_arg.K = K; // allocate device memory std::cout << "allocate device memory" << std::endl; RT_CHECK(vx_mem_alloc(device, sizeA * sizeof(I_TYPE), VX_MEM_READ, &A_buffer)); RT_CHECK(vx_mem_address(A_buffer, &kernel_arg.A_addr)); RT_CHECK(vx_mem_alloc(device, sizeB * sizeof(I_TYPE), VX_MEM_READ, &B_buffer)); RT_CHECK(vx_mem_address(B_buffer, &kernel_arg.B_addr)); RT_CHECK(vx_mem_alloc(device, sizeC * sizeof(O_TYPE), VX_MEM_WRITE, &C_buffer)); RT_CHECK(vx_mem_address(C_buffer, &kernel_arg.C_addr)); std::cout << "A_addr=0x" << std::hex << kernel_arg.A_addr << std::endl; std::cout << "B_addr=0x" << std::hex << kernel_arg.B_addr << std::endl; std::cout << "C_addr=0x" << std::hex << kernel_arg.C_addr << std::endl; // generate source data std::vector h_A(sizeA); std::vector h_B(sizeB); for (uint32_t i = 0; i < sizeA; ++i) { h_A[i] = Comparator::generate(); } for (uint32_t i = 0; i < sizeB; ++i) { h_B[i] = Comparator::generate(); } // upload matrix A buffer { std::cout << "upload matrix A buffer" << std::endl; RT_CHECK(vx_copy_to_dev(A_buffer, h_A.data(), 0, sizeA * sizeof(I_TYPE))); } // upload matrix B buffer { std::cout << "upload matrix B buffer" << std::endl; RT_CHECK(vx_copy_to_dev(B_buffer, h_B.data(), 0, sizeB * sizeof(I_TYPE))); } // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file, &krnl_buffer)); // upload kernel argument std::cout << "upload kernel argument" << std::endl; RT_CHECK(vx_upload_bytes(device, &kernel_arg, sizeof(kernel_arg_t), &args_buffer)); auto time_start = std::chrono::high_resolution_clock::now(); // start device std::cout << "start device" << std::endl; RT_CHECK(vx_start(device, krnl_buffer, args_buffer)); // wait for completion std::cout << "wait for completion" << std::endl; RT_CHECK(vx_ready_wait(device, VX_MAX_TIMEOUT)); auto time_end = std::chrono::high_resolution_clock::now(); double elapsed = std::chrono::duration_cast(time_end - time_start).count(); printf("Elapsed time: %lg ms\n", elapsed); // download destination buffer std::vector h_C(sizeC); std::cout << "download destination buffer" << std::endl; RT_CHECK(vx_copy_from_dev(h_C.data(), C_buffer, 0, sizeC * sizeof(O_TYPE))); // verify result std::cout << "verify result" << std::endl; int errors = 0; { std::vector h_ref(sizeC); matmul_cpu(h_ref.data(), h_A.data(), h_B.data(), M, N, K); for (uint32_t i = 0; i < h_ref.size(); ++i) { if (!Comparator::compare(h_C[i], h_ref[i], i, errors)) { ++errors; } } } // cleanup std::cout << "cleanup" << std::endl; cleanup(); if (errors != 0) { std::cout << "Found " << std::dec << errors << " errors!" << std::endl; std::cout << "FAILED!" << std::endl; return errors; } std::cout << "PASSED!" << std::endl; return 0; }