#include #include #include #include #include #include #include #include #include #include #include #include "warp.h" #include "instr.h" #include "core.h" #include using namespace vortex; union reg_data_t { Word u; WordI i; WordF f; float f32; double f64; uint32_t u32; uint64_t u64; int32_t i32; int64_t i64; }; inline uint32_t get_fpu_rm(uint32_t func3, Core* core, uint32_t tid, uint32_t wid) { return (func3 == 0x7) ? core->get_csr(VX_CSR_FRM, tid, wid) : func3; } inline void update_fcrs(uint32_t fflags, Core* core, uint32_t tid, uint32_t wid) { if (fflags) { core->set_csr(VX_CSR_FCSR, core->get_csr(VX_CSR_FCSR, tid, wid) | fflags, tid, wid); core->set_csr(VX_CSR_FFLAGS, core->get_csr(VX_CSR_FFLAGS, tid, wid) | fflags, tid, wid); } } inline uint64_t nan_box(uint32_t value) { uint64_t mask = 0xffffffff00000000; return value | mask; } inline bool is_nan_boxed(uint64_t value) { return (uint32_t(value >> 32) == 0xffffffff); } inline int64_t check_boxing(int64_t a) { if (is_nan_boxed(a)) return a; return nan_box(0x7fc00000); // NaN } void Warp::execute(const Instr &instr, pipeline_trace_t *trace) { assert(tmask_.any()); auto next_pc = PC_ + 4; auto next_tmask = tmask_; auto func2 = instr.getFunc2(); auto func3 = instr.getFunc3(); auto func5 = instr.getFunc5(); auto func6 = instr.getFunc6(); auto func7 = instr.getFunc7(); auto opcode = instr.getOpcode(); auto rdest = instr.getRDest(); auto rsrc0 = instr.getRSrc(0); auto rsrc1 = instr.getRSrc(1); auto rsrc2 = instr.getRSrc(2); auto immsrc = sext((Word)instr.getImm(), 32); auto vmask = instr.getVmask(); auto num_threads = arch_.num_threads(); uint32_t thread_start = 0; for (; thread_start < num_threads; ++thread_start) { if (tmask_.test(thread_start)) break; } std::vector rsdata(num_threads); std::vector rddata(num_threads); auto num_rsrcs = instr.getNRSrc(); if (num_rsrcs) { for (uint32_t i = 0; i < num_rsrcs; ++i) { auto type = instr.getRSType(i); auto reg = instr.getRSrc(i); switch (type) { case RegType::Integer: DPH(2, "Src" << std::dec << i << " Reg: " << type << std::dec << reg << "={"); for (uint32_t t = 0; t < num_threads; ++t) { if (t) DPN(2, ", "); if (!tmask_.test(t)) { DPN(2, "-"); continue; } rsdata[t][i].u = ireg_file_.at(t)[reg]; DPN(2, "0x" << std::hex << rsdata[t][i].i); } DPN(2, "}" << std::endl); break; case RegType::Float: DPH(2, "Src" << std::dec << i << " Reg: " << type << std::dec << reg << "={"); for (uint32_t t = 0; t < num_threads; ++t) { if (t) DPN(2, ", "); if (!tmask_.test(t)) { DPN(2, "-"); continue; } rsdata[t][i].u64 = freg_file_.at(t)[reg]; DPN(2, "0x" << std::hex << rsdata[t][i].f); } DPN(2, "}" << std::endl); break; case RegType::Vector: // TODO: break; case RegType::None: break; } } } bool rd_write = false; switch (opcode) { case LUI_INST: { // RV32I: LUI trace->exe_type = ExeType::ALU; trace->alu_type = AluType::ARITH; for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; rddata[t].i = immsrc << 12; } rd_write = true; break; } case AUIPC_INST: { // RV32I: AUIPC trace->exe_type = ExeType::ALU; trace->alu_type = AluType::ARITH; for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; rddata[t].i = (immsrc << 12) + PC_; } rd_write = true; break; } case R_INST: { trace->exe_type = ExeType::ALU; trace->alu_type = AluType::ARITH; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; if (func7 & 0x1) { switch (func3) { case 0: { // RV32M: MUL rddata[t].i = rsdata[t][0].i * rsdata[t][1].i; trace->alu_type = AluType::IMUL; break; } case 1: { // RV32M: MULH auto first = static_cast(rsdata[t][0].i); auto second = static_cast(rsdata[t][1].i); rddata[t].i = (first * second) >> XLEN; trace->alu_type = AluType::IMUL; break; } case 2: { // RV32M: MULHSU auto first = static_cast(rsdata[t][0].i); auto second = static_cast(rsdata[t][1].u); rddata[t].i = (first * second) >> XLEN; trace->alu_type = AluType::IMUL; break; } case 3: { // RV32M: MULHU auto first = static_cast(rsdata[t][0].u); auto second = static_cast(rsdata[t][1].u); rddata[t].i = (first * second) >> XLEN; trace->alu_type = AluType::IMUL; break; } case 4: { // RV32M: DIV auto dividen = rsdata[t][0].i; auto divisor = rsdata[t][1].i; auto largest_negative = WordI(1) << (XLEN-1); if (divisor == 0) { rddata[t].i = -1; } else if (dividen == largest_negative && divisor == -1) { rddata[t].i = dividen; } else { rddata[t].i = dividen / divisor; } trace->alu_type = AluType::IDIV; break; } case 5: { // RV32M: DIVU auto dividen = rsdata[t][0].u; auto divisor = rsdata[t][1].u; if (divisor == 0) { rddata[t].i = -1; } else { rddata[t].i = dividen / divisor; } trace->alu_type = AluType::IDIV; break; } case 6: { // RV32M: REM auto dividen = rsdata[t][0].i; auto divisor = rsdata[t][1].i; auto largest_negative = WordI(1) << (XLEN-1); if (rsdata[t][1].i == 0) { rddata[t].i = dividen; } else if (dividen == largest_negative && divisor == -1) { rddata[t].i = 0; } else { rddata[t].i = dividen % divisor; } trace->alu_type = AluType::IDIV; break; } case 7: { // RV32M: REMU auto dividen = rsdata[t][0].u; auto divisor = rsdata[t][1].u; if (rsdata[t][1].i == 0) { rddata[t].i = dividen; } else { rddata[t].i = dividen % divisor; } trace->alu_type = AluType::IDIV; break; } default: std::abort(); } } else { switch (func3) { case 0: { if (func7) { // RV32I: SUB rddata[t].i = rsdata[t][0].i - rsdata[t][1].i; } else { // RV32I: ADD rddata[t].i = rsdata[t][0].i + rsdata[t][1].i; } break; } case 1: { // RV32I: SLL Word shamt_mask = (Word(1) << log2up(XLEN)) - 1; Word shamt = rsdata[t][1].i & shamt_mask; rddata[t].i = rsdata[t][0].i << shamt; break; } case 2: { // RV32I: SLT rddata[t].i = rsdata[t][0].i < rsdata[t][1].i; break; } case 3: { // RV32I: SLTU rddata[t].i = rsdata[t][0].u < rsdata[t][1].u; break; } case 4: { // RV32I: XOR rddata[t].i = rsdata[t][0].i ^ rsdata[t][1].i; break; } case 5: { Word shamt_mask = ((Word)1 << log2up(XLEN)) - 1; Word shamt = rsdata[t][1].i & shamt_mask; if (func7) { // RV32I: SRA rddata[t].i = rsdata[t][0].i >> shamt; } else { // RV32I: SRL rddata[t].i = rsdata[t][0].u >> shamt; } break; } case 6: { // RV32I: OR rddata[t].i = rsdata[t][0].i | rsdata[t][1].i; break; } case 7: { // RV32I: AND rddata[t].i = rsdata[t][0].i & rsdata[t][1].i; break; } default: std::abort(); } } } rd_write = true; break; } case I_INST: { trace->exe_type = ExeType::ALU; trace->alu_type = AluType::ARITH; trace->used_iregs.set(rsrc0); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; switch (func3) { case 0: { // RV32I: ADDI rddata[t].i = rsdata[t][0].i + immsrc; break; } case 1: { // RV64I: SLLI rddata[t].i = rsdata[t][0].i << immsrc; break; } case 2: { // RV32I: SLTI rddata[t].i = rsdata[t][0].i < WordI(immsrc); break; } case 3: { // RV32I: SLTIU rddata[t].i = rsdata[t][0].u < immsrc; break; } case 4: { // RV32I: XORI rddata[t].i = rsdata[t][0].i ^ immsrc; break; } case 5: { if (func7) { // RV64I: SRAI Word result = rsdata[t][0].i >> immsrc; rddata[t].i = result; } else { // RV64I: SRLI Word result = rsdata[t][0].u >> immsrc; rddata[t].i = result; } break; } case 6: { // RV32I: ORI rddata[t].i = rsdata[t][0].i | immsrc; break; } case 7: { // RV32I: ANDI rddata[t].i = rsdata[t][0].i & immsrc; break; } } } rd_write = true; break; } case R_INST_W: { trace->exe_type = ExeType::ALU; trace->alu_type = AluType::ARITH; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; if (func7 & 0x1) { switch (func3) { case 0: { // RV64M: MULW int32_t product = (int32_t)rsdata[t][0].i * (int32_t)rsdata[t][1].i; rddata[t].i = sext((uint64_t)product, 32); trace->alu_type = AluType::IMUL; break; } case 4: { // RV64M: DIVW int32_t dividen = (int32_t)rsdata[t][0].i; int32_t divisor = (int32_t)rsdata[t][1].i; int32_t quotient; int32_t largest_negative = 0x80000000; if (divisor == 0){ quotient = -1; } else if (dividen == largest_negative && divisor == -1) { quotient = dividen; } else { quotient = dividen / divisor; } rddata[t].i = sext((uint64_t)quotient, 32); trace->alu_type = AluType::IDIV; break; } case 5: { // RV64M: DIVUW uint32_t dividen = (uint32_t)rsdata[t][0].i; uint32_t divisor = (uint32_t)rsdata[t][1].i; uint32_t quotient; if (divisor == 0){ quotient = -1; } else { quotient = dividen / divisor; } rddata[t].i = sext((uint64_t)quotient, 32); trace->alu_type = AluType::IDIV; break; } case 6: { // RV64M: REMW int32_t dividen = (uint32_t)rsdata[t][0].i; int32_t divisor = (uint32_t)rsdata[t][1].i; int32_t remainder; int32_t largest_negative = 0x80000000; if (divisor == 0){ remainder = dividen; } else if (dividen == largest_negative && divisor == -1) { remainder = 0; } else { remainder = dividen % divisor; } rddata[t].i = sext((uint64_t)remainder, 32); trace->alu_type = AluType::IDIV; break; } case 7: { // RV64M: REMUW uint32_t dividen = (uint32_t)rsdata[t][0].i; uint32_t divisor = (uint32_t)rsdata[t][1].i; uint32_t remainder; if (divisor == 0){ remainder = dividen; } else { remainder = dividen % divisor; } rddata[t].i = sext((uint64_t)remainder, 32); trace->alu_type = AluType::IDIV; break; } default: std::abort(); } } else { switch (func3) { case 0: { if (func7){ // RV64I: SUBW uint32_t result = (uint32_t)rsdata[t][0].i - (uint32_t)rsdata[t][1].i; rddata[t].i = sext((uint64_t)result, 32); } else{ // RV64I: ADDW uint32_t result = (uint32_t)rsdata[t][0].i + (uint32_t)rsdata[t][1].i; rddata[t].i = sext((uint64_t)result, 32); } break; } case 1: { // RV64I: SLLW uint32_t shamt_mask = 0x1F; uint32_t shamt = rsdata[t][1].i & shamt_mask; uint32_t result = (uint32_t)rsdata[t][0].i << shamt; rddata[t].i = sext((uint64_t)result, 32); break; } case 5: { uint32_t shamt_mask = 0x1F; uint32_t shamt = rsdata[t][1].i & shamt_mask; uint32_t result; if (func7) { // RV64I: SRAW result = (int32_t)rsdata[t][0].i >> shamt; } else { // RV64I: SRLW result = (uint32_t)rsdata[t][0].i >> shamt; } rddata[t].i = sext((uint64_t)result, 32); break; } default: std::abort(); } } } rd_write = true; break; } case I_INST_W: { trace->exe_type = ExeType::ALU; trace->alu_type = AluType::ARITH; trace->used_iregs.set(rsrc0); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; switch (func3) { case 0: { // RV64I: ADDIW uint32_t result = (uint32_t)rsdata[t][0].i + (uint32_t)immsrc; rddata[t].i = sext((uint64_t)result, 32); break; } case 1: { // RV64I: SLLIW uint32_t shamt_mask = 0x1F; uint32_t shamt = immsrc & shamt_mask; uint32_t result = rsdata[t][0].i << shamt; rddata[t].i = sext((uint64_t)result, 32); break; } case 5: { uint32_t shamt_mask = 0x1F; uint32_t shamt = immsrc & shamt_mask; uint32_t result; if (func7) { // RV64I: SRAIW result = (int32_t)rsdata[t][0].i >> shamt; } else { // RV64I: SRLIW result = (uint32_t)rsdata[t][0].i >> shamt; } rddata[t].i = sext((uint64_t)result, 32); break; } default: std::abort(); } } rd_write = true; break; } case B_INST: { trace->exe_type = ExeType::ALU; trace->alu_type = AluType::BRANCH; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; switch (func3) { case 0: { // RV32I: BEQ if (rsdata[t][0].i == rsdata[t][1].i) { next_pc = PC_ + immsrc; } break; } case 1: { // RV32I: BNE if (rsdata[t][0].i != rsdata[t][1].i) { next_pc = PC_ + immsrc; } break; } case 4: { // RV32I: BLT if (rsdata[t][0].i < rsdata[t][1].i) { next_pc = PC_ + immsrc; } break; } case 5: { // RV32I: BGE if (rsdata[t][0].i >= rsdata[t][1].i) { next_pc = PC_ + immsrc; } break; } case 6: { // RV32I: BLTU if (rsdata[t][0].u < rsdata[t][1].u) { next_pc = PC_ + immsrc; } break; } case 7: { // RV32I: BGEU if (rsdata[t][0].u >= rsdata[t][1].u) { next_pc = PC_ + immsrc; } break; } default: std::abort(); } break; // runonce } trace->fetch_stall = true; break; } case JAL_INST: { // RV32I: JAL trace->exe_type = ExeType::ALU; trace->alu_type = AluType::BRANCH; for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; rddata[t].i = next_pc; next_pc = PC_ + immsrc; trace->fetch_stall = true; break; // runonce } rd_write = true; break; } case JALR_INST: { // RV32I: JALR trace->exe_type = ExeType::ALU; trace->alu_type = AluType::BRANCH; trace->used_iregs.set(rsrc0); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; rddata[t].i = next_pc; next_pc = rsdata[t][0].i + immsrc; trace->fetch_stall = true; break; // runOnce } rd_write = true; break; } case L_INST: case FL: { trace->exe_type = ExeType::LSU; trace->lsu_type = LsuType::LOAD; trace->used_iregs.set(rsrc0); auto trace_data = std::make_shared(num_threads); trace->data = trace_data; if ((opcode == L_INST ) || (opcode == FL && func3 == 2) || (opcode == FL && func3 == 3)) { uint32_t data_bytes = 1 << (func3 & 0x3); uint32_t data_width = 8 * data_bytes; for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; uint64_t mem_addr = rsdata[t][0].i + immsrc; uint64_t read_data = 0; core_->dcache_read(&read_data, mem_addr, data_bytes); trace_data->mem_addrs.at(t) = {mem_addr, data_bytes}; switch (func3) { case 0: // RV32I: LB case 1: // RV32I: LH rddata[t].i = sext((Word)read_data, data_width); break; case 2: if (opcode == L_INST) { // RV32I: LW rddata[t].i = sext((Word)read_data, data_width); } else { // RV32F: FLW rddata[t].u64 = nan_box((uint32_t)read_data); } break; case 3: // RV64I: LD // RV32D: FLD case 4: // RV32I: LBU case 5: // RV32I: LHU case 6: // RV64I: LWU rddata[t].u64 = read_data; break; default: std::abort(); } } } else { auto &vd = vreg_file_.at(rdest); switch (instr.getVlsWidth()) { case 6: { for (uint32_t i = 0; i < vl_; i++) { Word mem_addr = ((rsdata[i][0].i) & 0xFFFFFFFC) + (i * vtype_.vsew / 8); Word mem_data = 0; core_->dcache_read(&mem_data, mem_addr, 4); Word *result_ptr = (Word *)(vd.data() + i); *result_ptr = mem_data; } break; } default: std::abort(); } } rd_write = true; break; } case S_INST: case FS: { trace->exe_type = ExeType::LSU; trace->lsu_type = LsuType::STORE; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); auto trace_data = std::make_shared(num_threads); trace->data = trace_data; if ((opcode == S_INST) || (opcode == FS && func3 == 2) || (opcode == FS && func3 == 3)) { uint32_t data_bytes = 1 << (func3 & 0x3); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; uint64_t mem_addr = rsdata[t][0].i + immsrc; uint64_t write_data = rsdata[t][1].u64; trace_data->mem_addrs.at(t) = {mem_addr, data_bytes}; switch (func3) { case 0: case 1: case 2: case 3: core_->dcache_write(&write_data, mem_addr, data_bytes); break; default: std::abort(); } } } else { for (uint32_t i = 0; i < vl_; i++) { uint64_t mem_addr = rsdata[i][0].i + (i * vtype_.vsew / 8); switch (instr.getVlsWidth()) { case 6: { // store word and unit strided (not checking for unit stride) uint32_t mem_data = *(uint32_t *)(vreg_file_.at(instr.getVs3()).data() + i); core_->dcache_write(&mem_data, mem_addr, 4); break; } default: std::abort(); } } } break; } case AMO: { trace->exe_type = ExeType::LSU; trace->lsu_type = LsuType::LOAD; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); auto trace_data = std::make_shared(num_threads); trace->data = trace_data; uint32_t data_bytes = 1 << (func3 & 0x3); uint32_t data_width = 8 * data_bytes; for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; uint64_t mem_addr = rsdata[t][0].u; trace_data->mem_addrs.at(t) = {mem_addr, data_bytes}; if (func5 == 0x02) { // LR uint64_t read_data = 0; core_->dcache_read(&read_data, mem_addr, data_bytes); core_->dcache_amo_reserve(mem_addr); rddata[t].i = sext((Word)read_data, data_width); } else if (func5 == 0x03) { // SC if (core_->dcache_amo_check(mem_addr)) { core_->dcache_write(&rsdata[t][1].u64, mem_addr, data_bytes); rddata[t].i = 0; } else { rddata[t].i = 1; } } else { uint64_t read_data = 0; core_->dcache_read(&read_data, mem_addr, data_bytes); auto read_data_i = sext((WordI)read_data, data_width); auto rs1_data_i = sext((WordI)rsdata[t][1].u64, data_width); auto read_data_u = zext((Word)read_data, data_width); auto rs1_data_u = zext((Word)rsdata[t][1].u64, data_width); uint64_t result; switch (func5) { case 0x00: // AMOADD result = read_data_i + rs1_data_i; break; case 0x01: // AMOSWAP result = rs1_data_u; break; case 0x04: // AMOXOR result = read_data_u ^ rs1_data_u; break; case 0x08: // AMOOR result = read_data_u | rs1_data_u; break; case 0x0c: // AMOAND result = read_data_u & rs1_data_u; break; case 0x10: // AMOMIN result = std::min(read_data_i, rs1_data_i); break; case 0x14: // AMOMAX result = std::max(read_data_i, rs1_data_i); break; case 0x18: // AMOMINU result = std::min(read_data_u, rs1_data_u); break; case 0x1c: // AMOMAXU result = std::max(read_data_u, rs1_data_u); break; default: std::abort(); } core_->dcache_write(&result, mem_addr, data_bytes); rddata[t].i = read_data_i; } } rd_write = true; break; } case SYS_INST: { for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; uint32_t csr_addr = immsrc; uint32_t csr_value; if (func3 == 0) { trace->exe_type = ExeType::ALU; trace->alu_type = AluType::SYSCALL; trace->fetch_stall = true; switch (csr_addr) { case 0: // RV32I: ECALL core_->trigger_ecall(); break; case 1: // RV32I: EBREAK core_->trigger_ebreak(); break; case 0x002: // URET case 0x102: // SRET case 0x302: // MRET break; default: std::abort(); } } else { trace->exe_type = ExeType::CSR; csr_value = core_->get_csr(csr_addr, t, warp_id_); switch (func3) { case 1: { // RV32I: CSRRW rddata[t].i = csr_value; core_->set_csr(csr_addr, rsdata[t][0].i, t, warp_id_); trace->used_iregs.set(rsrc0); rd_write = true; break; } case 2: { // RV32I: CSRRS rddata[t].i = csr_value; if (rsdata[t][0].i != 0) { core_->set_csr(csr_addr, csr_value | rsdata[t][0].i, t, warp_id_); } trace->used_iregs.set(rsrc0); rd_write = true; break; } case 3: { // RV32I: CSRRC rddata[t].i = csr_value; if (rsdata[t][0].i != 0) { core_->set_csr(csr_addr, csr_value & ~rsdata[t][0].i, t, warp_id_); } trace->used_iregs.set(rsrc0); rd_write = true; break; } case 5: { // RV32I: CSRRWI rddata[t].i = csr_value; core_->set_csr(csr_addr, rsrc0, t, warp_id_); rd_write = true; break; } case 6: { // RV32I: CSRRSI; rddata[t].i = csr_value; if (rsrc0 != 0) { core_->set_csr(csr_addr, csr_value | rsrc0, t, warp_id_); } rd_write = true; break; } case 7: { // RV32I: CSRRCI rddata[t].i = csr_value; if (rsrc0 != 0) { core_->set_csr(csr_addr, csr_value & ~rsrc0, t, warp_id_); } rd_write = true; break; } default: break; } } } break; } case FENCE: { // RV32I: FENCE trace->exe_type = ExeType::LSU; trace->lsu_type = LsuType::FENCE; break; } case FCI: { trace->exe_type = ExeType::FPU; for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; uint32_t frm = get_fpu_rm(func3, core_, t, warp_id_); uint32_t fflags = 0; switch (func7) { case 0x00: { // RV32F: FADD.S rddata[t].u64 = nan_box(rv_fadd_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), frm, &fflags)); trace->fpu_type = FpuType::FMA; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x01: { // RV32D: FADD.D rddata[t].u64 = rv_fadd_d(rsdata[t][0].u64, rsdata[t][1].u64, frm, &fflags); trace->fpu_type = FpuType::FMA; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x04: { // RV32F: FSUB.S rddata[t].u64 = nan_box(rv_fsub_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), frm, &fflags)); trace->fpu_type = FpuType::FMA; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x05: { // RV32D: FSUB.D rddata[t].u64 = rv_fsub_d(rsdata[t][0].u64, rsdata[t][1].u64, frm, &fflags); trace->fpu_type = FpuType::FMA; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x08: { // RV32F: FMUL.S rddata[t].u64 = nan_box(rv_fmul_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), frm, &fflags)); trace->fpu_type = FpuType::FMA; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x09: { // RV32D: FMUL.D rddata[t].u64 = rv_fmul_d(rsdata[t][0].u64, rsdata[t][1].u64, frm, &fflags); trace->fpu_type = FpuType::FMA; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x0c: { // RV32F: FDIV.S rddata[t].u64 = nan_box(rv_fdiv_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), frm, &fflags)); trace->fpu_type = FpuType::FDIV; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x0d: { // RV32D: FDIV.D rddata[t].u64 = rv_fdiv_d(rsdata[t][0].u64, rsdata[t][1].u64, frm, &fflags); trace->fpu_type = FpuType::FDIV; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x10: { switch (func3) { case 0: // RV32F: FSGNJ.S rddata[t].u64 = nan_box(rv_fsgnj_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64))); break; case 1: // RV32F: FSGNJN.S rddata[t].u64 = nan_box(rv_fsgnjn_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64))); break; case 2: // RV32F: FSGNJX.S rddata[t].u64 = nan_box(rv_fsgnjx_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64))); break; } trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x11: { switch (func3) { case 0: // RV32D: FSGNJ.D rddata[t].u64 = rv_fsgnj_d(rsdata[t][0].u64, rsdata[t][1].u64); break; case 1: // RV32D: FSGNJN.D rddata[t].u64 = rv_fsgnjn_d(rsdata[t][0].u64, rsdata[t][1].u64); break; case 2: // RV32D: FSGNJX.D rddata[t].u64 = rv_fsgnjx_d(rsdata[t][0].u64, rsdata[t][1].u64); break; } trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x14: { if (func3) { // RV32F: FMAX.S rddata[t].u64 = nan_box(rv_fmax_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), &fflags)); } else { // RV32F: FMIN.S rddata[t].u64 = nan_box(rv_fmin_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), &fflags)); } trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x15: { if (func3) { // RV32D: FMAX.D rddata[t].u64 = rv_fmax_d(rsdata[t][0].u64, rsdata[t][1].u64, &fflags); } else { // RV32D: FMIN.D rddata[t].u64 = rv_fmin_d(rsdata[t][0].u64, rsdata[t][1].u64, &fflags); } trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x20: { // RV32D: FCVT.S.D rddata[t].u64 = nan_box(rv_dtof(rsdata[t][0].u64)); trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x21: { // RV32D: FCVT.D.S rddata[t].u64 = rv_ftod(check_boxing(rsdata[t][0].u64)); trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x2c: { // RV32F: FSQRT.S rddata[t].u64 = nan_box(rv_fsqrt_s(check_boxing(rsdata[t][0].u64), frm, &fflags)); trace->fpu_type = FpuType::FSQRT; trace->used_fregs.set(rsrc0); break; } case 0x2d: { // RV32D: FSQRT.D rddata[t].u64 = rv_fsqrt_d(rsdata[t][0].u64, frm, &fflags); trace->fpu_type = FpuType::FSQRT; trace->used_fregs.set(rsrc0); break; } case 0x50: { switch (func3) { case 0: // RV32F: FLE.S rddata[t].i = rv_fle_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), &fflags); break; case 1: // RV32F: FLT.S rddata[t].i = rv_flt_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), &fflags); break; case 2: // RV32F: FEQ.S rddata[t].i = rv_feq_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), &fflags); break; } trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x51: { switch (func3) { case 0: // RV32D: FLE.D rddata[t].i = rv_fle_d(rsdata[t][0].u64, rsdata[t][1].u64, &fflags); break; case 1: // RV32D: FLT.D rddata[t].i = rv_flt_d(rsdata[t][0].u64, rsdata[t][1].u64, &fflags); break; case 2: // RV32D: FEQ.D rddata[t].i = rv_feq_d(rsdata[t][0].u64, rsdata[t][1].u64, &fflags); break; } trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); break; } case 0x60: { switch (rsrc1) { case 0: // RV32F: FCVT.W.S rddata[t].i = sext((uint64_t)rv_ftoi_s(check_boxing(rsdata[t][0].u64), frm, &fflags), 32); break; case 1: // RV32F: FCVT.WU.S rddata[t].i = sext((uint64_t)rv_ftou_s(check_boxing(rsdata[t][0].u64), frm, &fflags), 32); break; case 2: // RV64F: FCVT.L.S rddata[t].i = rv_ftol_s(check_boxing(rsdata[t][0].u64), frm, &fflags); break; case 3: // RV64F: FCVT.LU.S rddata[t].i = rv_ftolu_s(check_boxing(rsdata[t][0].u64), frm, &fflags); break; } trace->fpu_type = FpuType::FCVT; trace->used_fregs.set(rsrc0); break; } case 0x61: { switch (rsrc1) { case 0: // RV32D: FCVT.W.D rddata[t].i = sext((uint64_t)rv_ftoi_d(rsdata[t][0].u64, frm, &fflags), 32); break; case 1: // RV32D: FCVT.WU.D rddata[t].i = sext((uint64_t)rv_ftou_d(rsdata[t][0].u64, frm, &fflags), 32); break; case 2: // RV64D: FCVT.L.D rddata[t].i = rv_ftol_d(rsdata[t][0].u64, frm, &fflags); break; case 3: // RV64D: FCVT.LU.D rddata[t].i = rv_ftolu_d(rsdata[t][0].u64, frm, &fflags); break; } trace->fpu_type = FpuType::FCVT; trace->used_fregs.set(rsrc0); break; } case 0x68: { switch (rsrc1) { case 0: // RV32F: FCVT.S.W rddata[t].u64 = nan_box(rv_itof_s(rsdata[t][0].i, frm, &fflags)); break; case 1: // RV32F: FCVT.S.WU rddata[t].u64 = nan_box(rv_utof_s(rsdata[t][0].i, frm, &fflags)); break; case 2: // RV64F: FCVT.S.L rddata[t].u64 = nan_box(rv_ltof_s(rsdata[t][0].i, frm, &fflags)); break; case 3: // RV64F: FCVT.S.LU rddata[t].u64 = nan_box(rv_lutof_s(rsdata[t][0].i, frm, &fflags)); break; } trace->fpu_type = FpuType::FCVT; trace->used_iregs.set(rsrc0); break; } case 0x69: { switch (rsrc1) { case 0: // RV32D: FCVT.D.W rddata[t].u64 = rv_itof_d(rsdata[t][0].i, frm, &fflags); break; case 1: // RV32D: FCVT.D.WU rddata[t].u64 = rv_utof_d(rsdata[t][0].i, frm, &fflags); break; case 2: // RV64D: FCVT.D.L rddata[t].u64 = rv_ltof_d(rsdata[t][0].i, frm, &fflags); break; case 3: // RV64D: FCVT.D.LU rddata[t].u64 = rv_lutof_d(rsdata[t][0].i, frm, &fflags); break; } trace->fpu_type = FpuType::FCVT; trace->used_iregs.set(rsrc0); break; } case 0x70: { if (func3) { // RV32F: FCLASS.S rddata[t].i = rv_fclss_s(check_boxing(rsdata[t][0].u64)); } else { // RV32F: FMV.X.S uint32_t result = (uint32_t)rsdata[t][0].u64; rddata[t].i = sext((uint64_t)result, 32); } trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); break; } case 0x71: { if (func3) { // RV32D: FCLASS.D rddata[t].i = rv_fclss_d(rsdata[t][0].u64); } else { // RV64D: FMV.X.D rddata[t].i = rsdata[t][0].u64; } trace->fpu_type = FpuType::FNCP; trace->used_fregs.set(rsrc0); break; } case 0x78: { // RV32F: FMV.S.X rddata[t].u64 = nan_box((uint32_t)rsdata[t][0].i); trace->fpu_type = FpuType::FNCP; trace->used_iregs.set(rsrc0); break; } case 0x79: { // RV64D: FMV.D.X rddata[t].u64 = rsdata[t][0].i; trace->fpu_type = FpuType::FNCP; trace->used_iregs.set(rsrc0); break; } } update_fcrs(fflags, core_, t, warp_id_); } rd_write = true; break; } case FMADD: case FMSUB: case FMNMADD: case FMNMSUB: { trace->fpu_type = FpuType::FMA; trace->used_fregs.set(rsrc0); trace->used_fregs.set(rsrc1); trace->used_fregs.set(rsrc2); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; uint32_t frm = get_fpu_rm(func3, core_, t, warp_id_); uint32_t fflags = 0; switch (opcode) { case FMADD: if (func2) // RV32D: FMADD.D rddata[t].u64 = rv_fmadd_d(rsdata[t][0].u64, rsdata[t][1].u64, rsdata[t][2].u64, frm, &fflags); else // RV32F: FMADD.S rddata[t].u64 = nan_box(rv_fmadd_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), check_boxing(rsdata[t][2].u64), frm, &fflags)); break; case FMSUB: if (func2) // RV32D: FMSUB.D rddata[t].u64 = rv_fmsub_d(rsdata[t][0].u64, rsdata[t][1].u64, rsdata[t][2].u64, frm, &fflags); else // RV32F: FMSUB.S rddata[t].u64 = nan_box(rv_fmsub_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), check_boxing(rsdata[t][2].u64), frm, &fflags)); break; case FMNMADD: if (func2) // RV32D: FNMADD.D rddata[t].u64 = rv_fnmadd_d(rsdata[t][0].u64, rsdata[t][1].u64, rsdata[t][2].u64, frm, &fflags); else // RV32F: FNMADD.S rddata[t].u64 = nan_box(rv_fnmadd_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), check_boxing(rsdata[t][2].u64), frm, &fflags)); break; case FMNMSUB: if (func2) // RV32D: FNMSUB.D rddata[t].u64 = rv_fnmsub_d(rsdata[t][0].u64, rsdata[t][1].u64, rsdata[t][2].u64, frm, &fflags); else // RV32F: FNMSUB.S rddata[t].u64 = nan_box(rv_fnmsub_s(check_boxing(rsdata[t][0].u64), check_boxing(rsdata[t][1].u64), check_boxing(rsdata[t][2].u64), frm, &fflags)); break; default: break; } update_fcrs(fflags, core_, t, warp_id_); } rd_write = true; break; } case EXT1: { switch (func7) { case 0: { switch (func3) { case 0: { // TMC trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::TMC; trace->used_iregs.set(rsrc0); trace->fetch_stall = true; next_tmask.reset(); for (uint32_t t = 0; t < num_threads; ++t) { next_tmask.set(t, rsdata.at(thread_start)[0].i & (1 << t)); } } break; case 1: { // WSPAWN trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::WSPAWN; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); trace->fetch_stall = true; core_->wspawn(rsdata.at(thread_start)[0].i, rsdata.at(thread_start)[1].i); } break; case 2: { // SPLIT trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::SPLIT; trace->used_iregs.set(rsrc0); trace->fetch_stall = true; auto stack_size = ipdom_stack_.size(); ThreadMask then_tmask, else_tmask; for (uint32_t t = 0; t < num_threads; ++t) { auto cond = ireg_file_.at(t).at(rsrc0); then_tmask[t] = tmask_.test(t) && cond; else_tmask[t] = tmask_.test(t) && !cond; } if (then_tmask.count() != tmask_.count() && else_tmask.count() != tmask_.count()) { if (ipdom_stack_.size() == arch_.ipdom_size()) { std::cout << "IPDOM stack is full! size=" << std::dec << ipdom_stack_.size() << ", PC=" << std::hex << PC_ << " (#" << std::dec << trace->uuid << ")\n" << std::dec << std::flush; std::abort(); } if (then_tmask.count() >= else_tmask.count()) { next_tmask = then_tmask; } else { next_tmask = else_tmask; } // push reconvergence thread mask ipdom_stack_.emplace(tmask_); // push flipped thread mask auto join_tmask = ~next_tmask & tmask_; ipdom_stack_.emplace(join_tmask, next_pc); } else { // Uniform control-flow } for (uint32_t t = thread_start; t < num_threads; ++t) { rddata[t].i = stack_size; } rd_write = true; } break; case 3: { // JOIN trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::JOIN; trace->used_iregs.set(rsrc0); trace->fetch_stall = true; uint32_t stack_ptr = ireg_file_.at(thread_start).at(rsrc0); if (stack_ptr != ipdom_stack_.size()) { if (ipdom_stack_.empty()) { std::cout << "IPDOM stack is empty!\n" << std::flush; std::abort(); } next_tmask = ipdom_stack_.top().tmask; if (!ipdom_stack_.top().fallthrough) { next_pc = ipdom_stack_.top().PC; } ipdom_stack_.pop(); } else { // Uniform control-flow } } break; case 4: { // BAR trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::BAR; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); trace->fetch_stall = true; trace->data = std::make_shared(rsdata[thread_start][0].i, rsdata[thread_start][1].i); } break; case 5: { // PRED trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::TMC; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); trace->fetch_stall = true; ThreadMask pred; for (uint32_t t = 0; t < num_threads; ++t) { pred[t] = tmask_.test(t) && (ireg_file_.at(t).at(rsrc0) & 0x1); } if (pred.any()) { next_tmask &= pred; } else { next_tmask = ireg_file_.at(thread_start).at(rsrc1); } } break; default: std::abort(); } } break; case 1: switch (func3) { case 0: { // RASTER trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::RASTER; auto trace_data = std::make_shared(); trace->data = trace_data; for (uint32_t ri = 0, rn = core_->raster_units_.size(); ri < rn; ++ri) { trace_data->raster_idx = core_->raster_idx(); bool has_stamps = false; for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; auto result = core_->raster_units_.at(trace_data->raster_idx)->fetch( core_->id(), warp_id_, t, core_->csrs_[warp_id_][t]); rddata[t].i = result; has_stamps |= (result != 0); } if (has_stamps) break; } rd_write = true; } break; default: std::abort(); } break; default: std::abort(); } } break; case EXT2: { switch (func3) { case 0: { // TEX trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::TEX; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); trace->used_iregs.set(rsrc2); auto trace_data = std::make_shared(num_threads); trace->data = trace_data; trace_data->tex_idx = core_->tex_idx(); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; auto u = rsdata[t][0].i; auto v = rsdata[t][1].i; auto lod = rsdata[t][2].i; auto stage = func2; auto color = core_->tex_units_.at(trace_data->tex_idx)->read( core_->id(), warp_id_, t, stage, u, v, lod, core_->csrs_[warp_id_][t], trace_data); rddata[t].i = color; } rd_write = true; } break; case 1: switch (func2) { case 0: { // CMOV trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::CMOV; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); trace->used_iregs.set(rsrc2); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; rddata[t].i = rsdata[t][0].i ? rsdata[t][1].i : rsdata[t][2].i; } rd_write = true; } break; case 1: { // ROP trace->exe_type = ExeType::GPU; trace->gpu_type = GpuType::ROP; trace->used_iregs.set(rsrc0); trace->used_iregs.set(rsrc1); trace->used_iregs.set(rsrc2); auto trace_data = std::make_shared(); trace->data = trace_data; trace_data->rop_idx = core_->rop_idx(); for (uint32_t t = thread_start; t < num_threads; ++t) { if (!tmask_.test(t)) continue; auto pos_face = rsdata[t][0].i; auto color = rsdata[t][1].i; auto depth = rsdata[t][2].i; auto f = (pos_face >> 0) & 0x1; auto x = (pos_face >> 1) & 0x7fff; auto y = (pos_face >> 16) & 0x7fff; core_->rop_units_.at(trace_data->rop_idx)->write( core_->id(), warp_id_, t, x, y, f, color, depth, core_->csrs_[warp_id_][t], trace_data); } } break; default: std::abort(); } break; default: std::abort(); } } break; case VSET: { uint32_t VLEN = arch_.vsize() * 8; uint32_t VLMAX = (instr.getVlmul() * VLEN) / instr.getVsew(); switch (func3) { case 0: // vector-vector switch (func6) { case 0: { auto& vr1 = vreg_file_.at(rsrc0); auto& vr2 = vreg_file_.at(rsrc1); auto& vd = vreg_file_.at(rdest); auto& mask = vreg_file_.at(0); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t emask = *(uint8_t *)(mask.data() + i); uint8_t value = emask & 0x1; if (vmask || (!vmask && value)) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = first + second; DP(3, "Adding " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t emask = *(uint16_t *)(mask.data() + i); uint16_t value = emask & 0x1; if (vmask || (!vmask && value)) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = first + second; DP(3, "Adding " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t emask = *(uint32_t *)(mask.data() + i); uint32_t value = emask & 0x1; if (vmask || (!vmask && value)) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = first + second; DP(3, "Adding " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } } } } break; case 24: { // vmseq auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = (first == second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = (first == second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = (first == second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } } } break; case 25: { // vmsne auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = (first != second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = (first != second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = (first != second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } } } break; case 26: { // vmsltu auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = (first < second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = (first < second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = (first < second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } } } break; case 27: { // vmslt auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { int8_t first = *(int8_t *)(vr1.data() + i); int8_t second = *(int8_t *)(vr2.data() + i); int8_t result = (first < second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { int16_t first = *(int16_t *)(vr1.data() + i); int16_t second = *(int16_t *)(vr2.data() + i); int16_t result = (first < second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(int16_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { int32_t first = *(int32_t *)(vr1.data() + i); int32_t second = *(int32_t *)(vr2.data() + i); int32_t result = (first < second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(int32_t *)(vd.data() + i) = result; } } } break; case 28: { // vmsleu auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = (first <= second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = (first <= second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = (first <= second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } } } break; case 29: { // vmsle auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { int8_t first = *(int8_t *)(vr1.data() + i); int8_t second = *(int8_t *)(vr2.data() + i); int8_t result = (first <= second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { int16_t first = *(int16_t *)(vr1.data() + i); int16_t second = *(int16_t *)(vr2.data() + i); int16_t result = (first <= second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(int16_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { int32_t first = *(int32_t *)(vr1.data() + i); int32_t second = *(int32_t *)(vr2.data() + i); int32_t result = (first <= second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(int32_t *)(vd.data() + i) = result; } } } break; case 30: { // vmsgtu auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = (first > second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = (first > second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = (first > second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } } } break; case 31: { // vmsgt auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { int8_t first = *(int8_t *)(vr1.data() + i); int8_t second = *(int8_t *)(vr2.data() + i); int8_t result = (first > second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { int16_t first = *(int16_t *)(vr1.data() + i); int16_t second = *(int16_t *)(vr2.data() + i); int16_t result = (first > second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(int16_t *)(vd.data() + i) = result; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { int32_t first = *(int32_t *)(vr1.data() + i); int32_t second = *(int32_t *)(vr2.data() + i); int32_t result = (first > second) ? 1 : 0; DP(3, "Comparing " << first << " + " << second << " = " << result); *(int32_t *)(vd.data() + i) = result; } } } break; } break; case 2: { switch (func6) { case 24: { // vmandnot auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t first_value = (first & 0x1); uint8_t second_value = (second & 0x1); uint8_t result = (first_value & !second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t first_value = (first & 0x1); uint16_t second_value = (second & 0x1); uint16_t result = (first_value & !second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t first_value = (first & 0x1); uint32_t second_value = (second & 0x1); uint32_t result = (first_value & !second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 25: { // vmand auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t first_value = (first & 0x1); uint8_t second_value = (second & 0x1); uint8_t result = (first_value & second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t first_value = (first & 0x1); uint16_t second_value = (second & 0x1); uint16_t result = (first_value & second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t first_value = (first & 0x1); uint32_t second_value = (second & 0x1); uint32_t result = (first_value & second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 26: { // vmor auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t first_value = (first & 0x1); uint8_t second_value = (second & 0x1); uint8_t result = (first_value | second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t first_value = (first & 0x1); uint16_t second_value = (second & 0x1); uint16_t result = (first_value | second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t first_value = (first & 0x1); uint32_t second_value = (second & 0x1); uint32_t result = (first_value | second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 27: { // vmxor auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t first_value = (first & 0x1); uint8_t second_value = (second & 0x1); uint8_t result = (first_value ^ second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t first_value = (first & 0x1); uint16_t second_value = (second & 0x1); uint16_t result = (first_value ^ second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t first_value = (first & 0x1); uint32_t second_value = (second & 0x1); uint32_t result = (first_value ^ second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 28: { // vmornot auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t first_value = (first & 0x1); uint8_t second_value = (second & 0x1); uint8_t result = (first_value | !second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t first_value = (first & 0x1); uint16_t second_value = (second & 0x1); uint16_t result = (first_value | !second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t first_value = (first & 0x1); uint32_t second_value = (second & 0x1); uint32_t result = (first_value | !second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 29: { // vmnand auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t first_value = (first & 0x1); uint8_t second_value = (second & 0x1); uint8_t result = !(first_value & second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t first_value = (first & 0x1); uint16_t second_value = (second & 0x1); uint16_t result = !(first_value & second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t first_value = (first & 0x1); uint32_t second_value = (second & 0x1); uint32_t result = !(first_value & second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 30: { // vmnor auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t first_value = (first & 0x1); uint8_t second_value = (second & 0x1); uint8_t result = !(first_value | second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t first_value = (first & 0x1); uint16_t second_value = (second & 0x1); uint16_t result = !(first_value | second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t first_value = (first & 0x1); uint32_t second_value = (second & 0x1); uint32_t result = !(first_value | second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 31: { // vmxnor auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t first_value = (first & 0x1); uint8_t second_value = (second & 0x1); uint8_t result = !(first_value ^ second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t first_value = (first & 0x1); uint16_t second_value = (second & 0x1); uint16_t result = !(first_value ^ second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t first_value = (first & 0x1); uint32_t second_value = (second & 0x1); uint32_t result = !(first_value ^ second_value); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 37: { // vmul auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = (first * second); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = (first * second); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = (first * second); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 45: { // vmacc auto &vr1 = vreg_file_.at(rsrc0); auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t first = *(uint8_t *)(vr1.data() + i); uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = (first * second); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) += result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t first = *(uint16_t *)(vr1.data() + i); uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = (first * second); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) += result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t first = *(uint32_t *)(vr1.data() + i); uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = (first * second); DP(3, "Comparing " << first << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) += result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; } } break; case 6: { switch (func6) { case 0: { auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = (rsdata[i][0].i + second); DP(3, "Comparing " << rsdata[i][0].i << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = (rsdata[i][0].i + second); DP(3, "Comparing " << rsdata[i][0].i << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = (rsdata[i][0].i + second); DP(3, "Comparing " << rsdata[i][0].i << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; case 37: { // vmul.vx auto &vr2 = vreg_file_.at(rsrc1); auto &vd = vreg_file_.at(rdest); if (vtype_.vsew == 8) { for (uint32_t i = 0; i < vl_; i++) { uint8_t second = *(uint8_t *)(vr2.data() + i); uint8_t result = (rsdata[i][0].i * second); DP(3, "Comparing " << rsdata[i][0].i << " + " << second << " = " << result); *(uint8_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint8_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 16) { for (uint32_t i = 0; i < vl_; i++) { uint16_t second = *(uint16_t *)(vr2.data() + i); uint16_t result = (rsdata[i][0].i * second); DP(3, "Comparing " << rsdata[i][0].i << " + " << second << " = " << result); *(uint16_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint16_t *)(vd.data() + i) = 0; } } else if (vtype_.vsew == 32) { for (uint32_t i = 0; i < vl_; i++) { uint32_t second = *(uint32_t *)(vr2.data() + i); uint32_t result = (rsdata[i][0].i * second); DP(3, "Comparing " << rsdata[i][0].i << " + " << second << " = " << result); *(uint32_t *)(vd.data() + i) = result; } for (uint32_t i = vl_; i < VLMAX; i++) { *(uint32_t *)(vd.data() + i) = 0; } } } break; } } break; case 7: { vtype_.vill = 0; vtype_.vediv = instr.getVediv(); vtype_.vsew = instr.getVsew(); vtype_.vlmul = instr.getVlmul(); DP(3, "lmul:" << vtype_.vlmul << " sew:" << vtype_.vsew << " ediv: " << vtype_.vediv << "rsrc_" << rsdata[0][0].i << "VLMAX" << VLMAX); auto s0 = rsdata[0][0].u; if (s0 <= VLMAX) { vl_ = s0; } else if (s0 < (2 * VLMAX)) { vl_ = (uint32_t)ceil((s0 * 1.0) / 2.0); } else if (s0 >= (2 * VLMAX)) { vl_ = VLMAX; } rddata[0].i = vl_; } break; default: std::abort(); } } break; default: std::abort(); } if (rd_write) { trace->wb = true; auto type = instr.getRDType(); switch (type) { case RegType::Integer: if (rdest) { DPH(2, "Dest Reg: " << type << std::dec << rdest << "={"); for (uint32_t t = 0; t < num_threads; ++t) { if (t) DPN(2, ", "); if (!tmask_.test(t)) { DPN(2, "-"); continue; } ireg_file_.at(t)[rdest] = rddata[t].i; DPN(2, "0x" << std::hex << rddata[t].i); } DPN(2, "}" << std::endl); trace->used_iregs[rdest] = 1; assert(rdest != 0); } break; case RegType::Float: DPH(2, "Dest Reg: " << type << std::dec << rdest << "={"); for (uint32_t t = 0; t < num_threads; ++t) { if (t) DPN(2, ", "); if (!tmask_.test(t)) { DPN(2, "-"); continue; } freg_file_.at(t)[rdest] = rddata[t].u64; DPN(2, "0x" << std::hex << rddata[t].f); } DPN(2, "}" << std::endl); trace->used_fregs[rdest] = 1; break; default: std::abort(); break; } } PC_ += 4; if (PC_ != next_pc) { DP(3, "*** Next PC=0x" << std::hex << next_pc << std::dec); PC_ = next_pc; } if (tmask_ != next_tmask) { DPH(3, "*** New Tmask="); for (uint32_t i = 0; i < num_threads; ++i) DPN(3, next_tmask.test(i)); DPN(3, std::endl); tmask_ = next_tmask; if (!next_tmask.any()) { core_->active_warps_.reset(warp_id_); } } }