#include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include #include using namespace cocogfx; #define RT_CHECK(_expr) \ do { \ int _ret = _expr; \ if (0 == _ret) \ break; \ printf("Error: '%s' returned %d!\n", #_expr, (int)_ret); \ cleanup(); \ exit(-1); \ } while (false) /////////////////////////////////////////////////////////////////////////////// const char* kernel_file = "kernel.bin"; const char* trace_file = "triangle.cgltrace"; const char* output_file = "output.png"; const char* reference_file = nullptr; bool sw_tex = false; bool sw_rast = false; bool sw_rop = false; bool sw_interp = false; uint32_t start_draw = 0; uint32_t end_draw = -1; uint32_t clear_color = 0xff000000; uint32_t clear_depth = 0xffffffff; uint32_t dst_width = 128; uint32_t dst_height = 128; uint32_t zbuf_stride; uint32_t zbuf_pitch; uint32_t zbuf_size; uint32_t cbuf_stride; uint32_t cbuf_pitch; uint32_t cbuf_size; vx_device_h device = nullptr; vx_buffer_h staging_buf = nullptr; uint64_t zbuf_addr = 0; uint64_t cbuf_addr = 0; uint64_t texbuf_addr = 0; uint64_t tilebuf_addr = 0; uint64_t primbuf_addr = 0; kernel_arg_t kernel_arg; uint32_t tileLogSize = RASTER_TILE_LOGSIZE; static void show_usage() { std::cout << "Vortex 3D Rendering Test." << std::endl; std::cout << "Usage: [-t trace] [-s startdraw] [-e enddraw] [-o output] [-r reference] [-w width] [-h height] [-e empty] [-x s/w rast] [-y s/w rop] [-z s/w interp] [-k tilelogsize]" << std::endl; } static void parse_args(int argc, char **argv) { int c; while ((c = getopt(argc, argv, "t:s:e:i:o:r:w:h:t:k:uxyz?")) != -1) { switch (c) { case 't': trace_file = optarg; break; case 's': start_draw = std::atoi(optarg); break; case 'e': end_draw = std::atoi(optarg); break; case 'o': output_file = optarg; break; case 'r': reference_file = optarg; break; case 'w': dst_width = std::atoi(optarg); break; case 'h': dst_height = std::atoi(optarg); break; case 'u': sw_tex = true; break; case 'x': sw_rast = true; break; case 'y': sw_rop = true; break; case 'z': sw_interp = true; break; case 'k': tileLogSize = std::atoi(optarg); break; case '?': { show_usage(); exit(0); } break; default: show_usage(); exit(-1); } } if (strcmp (output_file, "null") == 0 && reference_file) { std::cout << "Error: the output file is missing for reference validation!" << std::endl; exit(1); } } void cleanup() { if (staging_buf) { vx_buf_free(staging_buf); } if (device) { if (zbuf_addr != 0) vx_mem_free(device, zbuf_addr); if (cbuf_addr != 0) vx_mem_free(device, cbuf_addr); if (texbuf_addr != 0) vx_mem_free(device, texbuf_addr); if (tilebuf_addr != 0) vx_mem_free(device, tilebuf_addr); if (primbuf_addr != 0) vx_mem_free(device, primbuf_addr); vx_dev_close(device); } } #ifdef SW_ENABLE #define RASTER_DCR_WRITE(addr, value) \ vx_dcr_write(device, addr, value); \ kernel_arg.raster_dcrs.write(addr, value) #define ROP_DCR_WRITE(addr, value) \ vx_dcr_write(device, addr, value); \ kernel_arg.rop_dcrs.write(addr, value) #define TEX_DCR_WRITE(addr, value) \ vx_dcr_write(device, addr, value); \ kernel_arg.tex_dcrs.write(addr, value) #else #define RASTER_DCR_WRITE(addr, value) \ vx_dcr_write(device, addr, value) #define ROP_DCR_WRITE(addr, value) \ vx_dcr_write(device, addr, value) #define TEX_DCR_WRITE(addr, value) \ vx_dcr_write(device, addr, value) #endif int render(const CGLTrace& trace) { std::cout << "render" << std::endl; auto time_begin = std::chrono::high_resolution_clock::now(); uint64_t instrs = 0; uint64_t cycles = 0; // render each draw call for (uint32_t d = 0, nd = trace.drawcalls.size(); d < nd; ++d) { if (d < start_draw || d > end_draw) continue; auto& drawcall = trace.drawcalls.at(d); auto& states = drawcall.states; std::vector tilebuf; std::vector primbuf; // Perform tile binning auto num_tiles = graphics::Binning(tilebuf, primbuf, drawcall.vertices, drawcall.primitives, dst_width, dst_height, drawcall.viewport.near, drawcall.viewport.far, tileLogSize); std::cout << "Binning allocated " << std::dec << num_tiles << " tiles with " << (primbuf.size() / sizeof(graphics::rast_prim_t)) << " total primitives." << std::endl; if (0 == num_tiles) continue; // allocate tile memory if (tilebuf_addr != 0) vx_mem_free(device, tilebuf_addr); if (primbuf_addr != 0) vx_mem_free(device, primbuf_addr); RT_CHECK(vx_mem_alloc(device, tilebuf.size(), &tilebuf_addr)); RT_CHECK(vx_mem_alloc(device, primbuf.size(), &primbuf_addr)); std::cout << "tilebuf_addr=0x" << std::hex << tilebuf_addr << std::dec << std::endl; std::cout << "primbuf_addr=0x" << std::hex << primbuf_addr << std::dec << std::endl; uint32_t alloc_size = std::max({tilebuf.size(), primbuf.size()}); RT_CHECK(vx_buf_alloc(device, alloc_size, &staging_buf)); // upload tiles buffer std::cout << "upload tile buffer" << std::endl; { auto buf_ptr = (uint8_t*)vx_host_ptr(staging_buf); memcpy(buf_ptr, tilebuf.data(), tilebuf.size()); RT_CHECK(vx_copy_to_dev(staging_buf, tilebuf_addr, tilebuf.size(), 0)); } // upload primitives buffer std::cout << "upload primitive buffer" << std::endl; { auto buf_ptr = (uint8_t*)vx_host_ptr(staging_buf); memcpy(buf_ptr, primbuf.data(), primbuf.size()); RT_CHECK(vx_copy_to_dev(staging_buf, primbuf_addr, primbuf.size(), 0)); } vx_buf_free(staging_buf); staging_buf = nullptr; uint32_t primbuf_stride = sizeof(graphics::rast_prim_t); // configure raster units RASTER_DCR_WRITE(DCR_RASTER_TBUF_ADDR, tilebuf_addr); RASTER_DCR_WRITE(DCR_RASTER_TILE_COUNT, num_tiles); RASTER_DCR_WRITE(DCR_RASTER_PBUF_ADDR, primbuf_addr); RASTER_DCR_WRITE(DCR_RASTER_PBUF_STRIDE, primbuf_stride); RASTER_DCR_WRITE(DCR_RASTER_SCISSOR_X, (dst_width << 16) | 0); RASTER_DCR_WRITE(DCR_RASTER_SCISSOR_Y, (dst_height << 16) | 0); // configure rop color buffer ROP_DCR_WRITE(DCR_ROP_CBUF_ADDR, cbuf_addr); ROP_DCR_WRITE(DCR_ROP_CBUF_PITCH, cbuf_pitch); ROP_DCR_WRITE(DCR_ROP_CBUF_WRITEMASK, states.color_writemask); if (states.depth_test || states.stencil_test) { // configure rop depth buffer ROP_DCR_WRITE(DCR_ROP_ZBUF_ADDR, zbuf_addr); ROP_DCR_WRITE(DCR_ROP_ZBUF_PITCH, zbuf_pitch); } if (states.depth_test) { // configure rop depth states auto depth_func = graphics::toVXCompare(states.depth_func); ROP_DCR_WRITE(DCR_ROP_DEPTH_FUNC, depth_func); ROP_DCR_WRITE(DCR_ROP_DEPTH_WRITEMASK, states.depth_writemask); } else { ROP_DCR_WRITE(DCR_ROP_DEPTH_FUNC, ROP_DEPTH_FUNC_ALWAYS); ROP_DCR_WRITE(DCR_ROP_DEPTH_WRITEMASK, 0); } if (states.stencil_test) { // configure rop stencil states auto stencil_func = graphics::toVXCompare(states.stencil_func); auto stencil_zpass = graphics::toVXStencilOp(states.stencil_zpass); auto stencil_zfail = graphics::toVXStencilOp(states.stencil_zfail); auto stencil_fail = graphics::toVXStencilOp(states.stencil_fail); ROP_DCR_WRITE(DCR_ROP_STENCIL_FUNC, stencil_func); ROP_DCR_WRITE(DCR_ROP_STENCIL_ZPASS, stencil_zpass); ROP_DCR_WRITE(DCR_ROP_STENCIL_ZPASS, stencil_zfail); ROP_DCR_WRITE(DCR_ROP_STENCIL_FAIL, stencil_fail); ROP_DCR_WRITE(DCR_ROP_STENCIL_REF, states.stencil_ref); ROP_DCR_WRITE(DCR_ROP_STENCIL_MASK, states.stencil_mask); ROP_DCR_WRITE(DCR_ROP_STENCIL_WRITEMASK, states.stencil_writemask); } else { ROP_DCR_WRITE(DCR_ROP_STENCIL_FUNC, ROP_DEPTH_FUNC_ALWAYS); ROP_DCR_WRITE(DCR_ROP_STENCIL_ZPASS, ROP_STENCIL_OP_KEEP); ROP_DCR_WRITE(DCR_ROP_STENCIL_ZPASS, ROP_STENCIL_OP_KEEP); ROP_DCR_WRITE(DCR_ROP_STENCIL_FAIL, ROP_STENCIL_OP_KEEP); ROP_DCR_WRITE(DCR_ROP_STENCIL_REF, 0); ROP_DCR_WRITE(DCR_ROP_STENCIL_MASK, ROP_STENCIL_MASK); ROP_DCR_WRITE(DCR_ROP_STENCIL_WRITEMASK, 0); } if (states.blend_enabled) { // configure rop blend states auto blend_src = graphics::toVXBlendFunc(states.blend_src); auto blend_dst = graphics::toVXBlendFunc(states.blend_dst); ROP_DCR_WRITE(DCR_ROP_BLEND_MODE, (ROP_BLEND_MODE_ADD << 16) // DST | (ROP_BLEND_MODE_ADD << 0)); // SRC ROP_DCR_WRITE(DCR_ROP_BLEND_FUNC, (blend_dst << 24) // DST_A | (blend_dst << 16) // DST_RGB | (blend_src << 8) // SRC_A | (blend_src << 0)); // SRC_RGB } else { ROP_DCR_WRITE(DCR_ROP_BLEND_MODE, (ROP_BLEND_MODE_ADD << 16) // DST | (ROP_BLEND_MODE_ADD << 0)); // SRC ROP_DCR_WRITE(DCR_ROP_BLEND_FUNC, (ROP_BLEND_FUNC_ZERO << 24) // DST_A | (ROP_BLEND_FUNC_ZERO << 16) // DST_RGB | (ROP_BLEND_FUNC_ONE << 8) // SRC_A | (ROP_BLEND_FUNC_ONE << 0)); // SRC_RGB } if (states.texture_enabled) { // configure texture states std::vector texbuf; std::vector mip_offsets; auto& texture = trace.textures.at(drawcall.texture_id); auto tex_bpp = Format::GetInfo(texture.format).BytePerPixel; auto tex_pitch = texture.width * tex_bpp; // generate mipmaps RT_CHECK(GenerateMipmaps(texbuf, mip_offsets, texture.pixels.data(), texture.format, texture.width, texture.height, tex_pitch)); uint32_t tex_logwidth = log2ceil(texture.width); uint32_t tex_logheight = log2ceil(texture.height); int tex_format = graphics::toVXFormat(texture.format); int tex_filter = (states.texture_magfilter != CGLTrace::FILTER_NEAREST) || (states.texture_magfilter != CGLTrace::FILTER_NEAREST); int tex_wrapU = (states.texture_addressU == CGLTrace::ADDRESS_WRAP); int tex_wrapV = (states.texture_addressU == CGLTrace::ADDRESS_WRAP); // allocate texture memory if (texbuf_addr != 0) vx_mem_free(device, texbuf_addr); RT_CHECK(vx_mem_alloc(device, texbuf.size(), &texbuf_addr)); std::cout << "texbuf_addr=0x" << std::hex << texbuf_addr << std::dec << std::endl; // upload texture data std::cout << "upload texture buffer" << std::endl; { RT_CHECK(vx_buf_alloc(device, texbuf.size(), &staging_buf)); auto buf_ptr = (uint8_t*)vx_host_ptr(staging_buf); memcpy(buf_ptr, texbuf.data(), texbuf.size()); RT_CHECK(vx_copy_to_dev(staging_buf, texbuf_addr, texbuf.size(), 0)); vx_buf_free(staging_buf); staging_buf = nullptr; } // configure texture units TEX_DCR_WRITE(DCR_TEX_STAGE, 0); TEX_DCR_WRITE(DCR_TEX_LOGDIM, (tex_logheight << 16) | tex_logwidth); TEX_DCR_WRITE(DCR_TEX_FORMAT, tex_format); TEX_DCR_WRITE(DCR_TEX_WRAP, (tex_wrapV << 16) | tex_wrapU); TEX_DCR_WRITE(DCR_TEX_FILTER, tex_filter ? TEX_FILTER_BILINEAR : TEX_FILTER_POINT); TEX_DCR_WRITE(DCR_TEX_ADDR, texbuf_addr); for (uint32_t i = 0; i < mip_offsets.size(); ++i) { assert(i < TEX_LOD_MAX); TEX_DCR_WRITE(DCR_TEX_MIPOFF(i), mip_offsets.at(i)); }; } // upload kernel argument std::cout << "upload kernel argument" << std::endl; { kernel_arg.depth_enabled = states.depth_test; kernel_arg.color_enabled = states.color_enabled; kernel_arg.tex_enabled = states.texture_enabled; kernel_arg.tex_modulate = (states.texture_enabled && states.texture_envmode == CGLTrace::ENVMODE_MODULATE); kernel_arg.prim_addr = primbuf_addr; if (kernel_arg.tex_modulate && !kernel_arg.color_enabled) kernel_arg.tex_modulate = false; if (kernel_arg.tex_enabled && kernel_arg.color_enabled && !kernel_arg.tex_modulate) kernel_arg.color_enabled = false; RT_CHECK(vx_buf_alloc(device, sizeof(kernel_arg_t), &staging_buf)); auto buf_ptr = (uint8_t*)vx_host_ptr(staging_buf); memcpy(buf_ptr, &kernel_arg, sizeof(kernel_arg_t)); RT_CHECK(vx_copy_to_dev(staging_buf, KERNEL_ARG_DEV_MEM_ADDR, sizeof(kernel_arg_t), 0)); vx_buf_free(staging_buf); staging_buf = nullptr; } auto time_start = std::chrono::high_resolution_clock::now(); // start device std::cout << "start device" << std::endl; RT_CHECK(vx_start(device)); // wait for completion std::cout << "wait for completion" << std::endl; RT_CHECK(vx_ready_wait(device, MAX_TIMEOUT)); auto time_end = std::chrono::high_resolution_clock::now(); double elapsed = std::chrono::duration_cast(time_end - time_start).count(); printf("Elapsed time: %lg ms\n", elapsed); if (d < trace.drawcalls.size()-1) { vx_dump_perf(device, stdout); } uint64_t instrs_; uint64_t cycles_; RT_CHECK(vx_perf_counter(device, CSR_MCYCLE, -1, &cycles_)); RT_CHECK(vx_perf_counter(device, CSR_MINSTRET, -1, &instrs_)); cycles += cycles_; instrs += instrs_; } // download destination buffer std::vector dst_pixels(cbuf_size); { std::cout << "download destination buffer" << std::endl; RT_CHECK(vx_buf_alloc(device, cbuf_size, &staging_buf)); RT_CHECK(vx_copy_from_dev(staging_buf, cbuf_addr, cbuf_size, 0)); auto buf_ptr = (uint8_t*)vx_host_ptr(staging_buf); memcpy(dst_pixels.data(), buf_ptr, cbuf_size); vx_buf_free(staging_buf); staging_buf = nullptr; } auto time_end = std::chrono::high_resolution_clock::now(); double elapsed = std::chrono::duration_cast(time_end - time_begin).count(); float IPC = (float)(double(instrs) / double(cycles)); printf("Total elapsed time: %lg ms, instrs=%ld, cycles=%ld, IPC=%f\n", elapsed, instrs, cycles, IPC); // save output image if (strcmp (output_file, "null") != 0) { std::cout << "save output image" << std::endl; auto bits = dst_pixels.data() + (dst_height-1) * cbuf_pitch; RT_CHECK(SaveImage(output_file, FORMAT_A8R8G8B8, bits, dst_width, dst_height, -cbuf_pitch)); } return 0; } int main(int argc, char *argv[]) { // parse command arguments parse_args(argc, argv); // open device connection std::cout << "open device connection" << std::endl; RT_CHECK(vx_dev_open(&device)); uint64_t isa_flags; RT_CHECK(vx_dev_caps(device, VX_CAPS_ISA_FLAGS, &isa_flags)); if (0 == (isa_flags & (VX_ISA_EXT_RASTER | VX_ISA_EXT_ROP | VX_ISA_EXT_IMADD))) { std::cout << "RASTER or ROP or IMADD extensions not supported!" << std::endl; cleanup(); return -1; } uint64_t max_cores, max_warps, max_threads; RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_CORES, &max_cores)); RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_WARPS, &max_warps)); RT_CHECK(vx_dev_caps(device, VX_CAPS_MAX_THREADS, &max_threads)); uint32_t num_tasks = max_cores * max_warps * max_threads; std::cout << "number of tasks: " << std::dec << num_tasks << std::endl; CGLTrace trace; RT_CHECK(trace.load(trace_file)); uint64_t total_drawcalls = trace.drawcalls.size(); uint64_t total_textures = trace.textures.size(); uint64_t total_vertices = 0; uint64_t total_primitives = 0; bool depth_test = false; bool stencil_test = false; bool blend_enabled = false; for (auto& drawcall : trace.drawcalls) { if (drawcall.states.depth_test) depth_test = true; if (drawcall.states.stencil_test) stencil_test = true; if (drawcall.states.blend_enabled) blend_enabled = true; total_vertices += drawcall.vertices.size(); total_primitives += drawcall.primitives.size(); } std::cout << "CGL Trace: drawcalls=" << std::dec << total_drawcalls << ", vertices=" << total_vertices << ", primitives=" << total_primitives << ", textures=" << total_textures << ", depth=" << depth_test << ", stencil=" << stencil_test << ", blend=" << blend_enabled << std::endl; // upload program std::cout << "upload program" << std::endl; RT_CHECK(vx_upload_kernel_file(device, kernel_file)); zbuf_stride = 4; zbuf_pitch = dst_width * zbuf_stride; zbuf_size = dst_height * zbuf_pitch; cbuf_stride = 4; cbuf_pitch = dst_width * cbuf_stride; cbuf_size = dst_width * cbuf_pitch; // allocate device memory RT_CHECK(vx_mem_alloc(device, zbuf_size, &zbuf_addr)); RT_CHECK(vx_mem_alloc(device, cbuf_size, &cbuf_addr)); std::cout << "zbuf_addr=0x" << std::hex << zbuf_addr << std::dec << std::endl; std::cout << "cbuf_addr=0x" << std::hex << cbuf_addr << std::dec << std::endl; // allocate staging buffer std::cout << "allocate staging buffer" << std::endl; uint32_t alloc_size = std::max(zbuf_size, cbuf_size); RT_CHECK(vx_buf_alloc(device, alloc_size, &staging_buf)); // clear depth buffer { std::cout << "clear depth buffer" << std::endl; auto buf_ptr = (uint32_t*)vx_host_ptr(staging_buf); for (uint32_t i = 0; i < (zbuf_size/4); ++i) { buf_ptr[i] = clear_depth; } RT_CHECK(vx_copy_to_dev(staging_buf, zbuf_addr, zbuf_size, 0)); } // clear destination buffer { std::cout << "clear destination buffer" << std::endl; auto buf_ptr = (uint32_t*)vx_host_ptr(staging_buf); for (uint32_t i = 0; i < (cbuf_size/4); ++i) { buf_ptr[i] = clear_color; } RT_CHECK(vx_copy_to_dev(staging_buf, cbuf_addr, cbuf_size, 0)); } vx_buf_free(staging_buf); staging_buf = nullptr; // update kernel arguments kernel_arg.log_num_tasks = log2ceil(num_tasks); kernel_arg.sw_tex = sw_tex; kernel_arg.sw_rast = sw_rast; kernel_arg.sw_rop = sw_rop; kernel_arg.sw_interp = sw_interp; kernel_arg.dst_width = dst_width; kernel_arg.dst_height = dst_height; kernel_arg.cbuf_stride = cbuf_stride; kernel_arg.cbuf_pitch = cbuf_pitch; kernel_arg.cbuf_addr = cbuf_addr; kernel_arg.zbuf_stride = zbuf_stride; kernel_arg.zbuf_pitch = zbuf_pitch; kernel_arg.zbuf_addr = zbuf_addr; // run tests RT_CHECK(render(trace)); // cleanup std::cout << "cleanup" << std::endl; cleanup(); if (reference_file) { auto errors = CompareImages(output_file, reference_file, FORMAT_A8R8G8B8, 1); if (0 == errors) { std::cout << "PASSED!" << std::endl; } else { std::cout << "FAILED! " << errors << " errors." << std::endl; return errors; } } return 0; }