
Introduction to Sequential
VHDL

Announcements

 Homework #2 due Today
 Homework #3 posted – due next week
 Reading Assignment
◦ Ch. 6 sections 3‐4, 7‐9

 Free homework grade for critical thinking
lecture
◦ Don’t forget to scan in

Before we talk about sequential
 Constants
◦ function like constants in a programming

language
 Their value cannot change during execution

◦ Declared with signals in the architecture’s
‘declarative section’
 ‘declarative section is after the ARCHITECTURE

line, before BEGIN

◦ Syntax:
 constant constant_name : type := value;

Note the syntax here

VHDL Constants
 Example:

ARCHITECTURE example OF constants IS

CONSTANT SEVEN : STD_LOGIC_VECTOR(6 downto 0) := “1111000”;

BEGIN

HEX0 <= SEVEN;

:
:

 Write the constant declaration for an 8-bit
standard logic vector equivalent to AAH

Constants with 7-segment display

 Seven Segment displays
 HEX0(0) = a
 HEX0(1) = b
 :
 :
 HEX0(6) = g

◦ 0 is ON : 1 is OFF

constant ZERO : std_logic_vector(6 downto 0) := "1000000";

segment g is off, all other segments are on

Sequential VHDL code
 Consists of one or more process

statements
◦ Each process is a concurrent statement
◦ All processes execute simultaneously
◦ Processes communicate using signals
◦ Statements within a process are executed

sequentially
◦ Most common structures are:
 If-then-else
 case

Processes
 A concurrent statement that is comprised

of sequential statements
◦ Sequential statements are evaluated in

sequence and their order is critical
◦ *NOTE* all signal assignments are made

concurrently at the END of process
execution. Signals assigned in the process are
not available for reading in the same process

Example: Process()
BEGIN

a <= ‘1’;
If (a= ‘1’) then …. Which branch is taken?
Else ….

END process;

Processes
 Syntax

[process_label:] PROCESS [(sensitivity_list)] [IS]
{process_declarative_item}

BEGIN
{sequential_statement}

END PROCESS [process_label];

 Sensitivity list
◦ List of signals that the process is sensitive to
◦ The process will execute when one of the

signals in the list has an event (changes value)
◦ All signals that are read in the process should

be included
◦ Do not include signals not used in the process

Sensitivity list (con’t)
 Process execution in simulation is in an

endless loop
◦ Execution starts when a signal in the

sensitivity list has an event
◦ Execution suspends when the last statement

is completed

 In simulation, all processes are evaluated
at the same time - concurrency

Case Statements
 Use to select one sequence of statements

for execution from a number of alternatives
◦ Similar to a C ‘switch’ structure
◦ Synthesizes to a MUX
◦ Selection is based on the value of a single

expression
CASE (expression) IS

WHEN choices => sequence of statements
{WHEN choices => sequence of statements}

END CASE;

◦ A list of choices can be associated with one
branch
 Separate choices with |

Case example
ENTITY xor_2 IS

PORT(a, b : IN STD_LOGIC;
c : OUT STD_LOGIC);

END xor_2;

ARCHITECTURE behavioral OF xor_2 IS
SIGNAL inputs : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN
inputs <= a & b;
ex_or: PROCESS(inputs)

BEGIN
CASE inputs IS

WHEN “01” => c <= ‘1’;
WHEN “10” => c <= ‘1’;
WHEN OTHERS => c <= ‘0’;

END CASE;
END PROCESS;

END behavioral;

Case Example (shortened)
ENTITY xor_2 IS

PORT(a, b : IN STD_LOGIC;
c : OUT STD_LOGIC);

END xor_2;

ARCHITECTURE behavioral OF xor_2 IS
SIGNAL inputs : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN
inputs <= a & b;
ex_or: PROCESS(inputs)

BEGIN
CASE inputs IS

WHEN “01” | “10” => c <= ‘1’;
WHEN OTHERS => c <= ‘0’;

END CASE;
END PROCESS;

END behavioral;

Case (con’t)
 Others choice
◦ Some compilers require WHEN OTHERS =>

as the last choice
◦ Some only require it if the set of choices does

not cover every possible value of the case
expression
◦ CYA and always include it
◦ It has to be the last branch

Mux Example
 Consider the following Mux

 Write the architecture
◦ Using a case statement

A

B

C

D

S0

S1

Y

S1 S0 Y

0 0 A

0 1 B

1 0 C

1 1 D

IF Statements
 Selects one or none of its alternative

sequence of statements depending on the
value of each branch’s condition
◦ Priority based on order of if – elsif conditions

IF condition THEN
sequence of statements

{ELSIF condition THEN
sequence of statements}

[ELSE
sequence of statements]

END IF;

If Statements (con’t)
 The condition must evaluate to a boolean

true or false
◦ IF ((a=‘1’) AND (b=‘0’)) THEN

 The ELSE statement is not necessarily
optional
◦ If a signal is assigned a value in any branch, it

must be assigned a value in all branches
◦ When a signal is not assigned a value in all

branches, a latch is inferred
◦ Inferred latches are bad. Don’t worry, the

synthesis tool will give you a warning

If Statements (con’t)
ARCHITECTURE xyz OF xor_2 IS
BEGIN

PROCESS (a, b)
BEGIN

IF a /= b then
c <= ‘1’;

ELSE
c <= ‘0’;

END IF;
END PROCESS;

END xyz;

ARCHITECTURE xyz OF xor_2 IS
BEGIN

PROCESS (a, b)
BEGIN

IF a /= b then
c <= ‘1’;

END IF;
END PROCESS;

END xyz;

Signal assignments in processes
 Signals take the last value they are assigned in a

process
 Assignments are made concurrently at the end of

process execution
 Default assignments can be used to shorten IF

statements
ARCHITECTURE xyz OF xor_2 IS
BEGIN

PROCESS (a, b)
BEGIN

c <= ‘0’; -- this is the default assignment
IF a /= b then

c <= ‘1’; -- c is only re-assigned if a /= b
END IF;

END PROCESS;
END xyz;
 In this example it is okay to have an IF without and ELSE

Mux Example
 Consider the following Mux

 Write the architecture
◦ Using an if statement

A

B

C

D

S0

S1

Y

S1 S0 Y

0 0 A

0 1 B

1 0 C

1 1 D

	Introduction to Sequential VHDL
	Announcements
	Slide Number 3
	Before we talk about sequential
	VHDL Constants
	Constants with 7-segment display
	Sequential VHDL code
	Processes
	Processes
	Sensitivity list (con’t)
	Case Statements
	Case example
	Case Example (shortened)
	Case (con’t)
	Mux Example
	IF Statements
	If Statements (con’t)
	If Statements (con’t)
	Signal assignments in processes
	Mux Example

