
Introduction to Sequential 
VHDL



Announcements

 Homework #2 due Today
 Homework #3 posted – due next week
 Reading Assignment 
◦ Ch. 6 sections 3‐4, 7‐9 

 Free homework grade for critical thinking 
lecture
◦ Don’t forget to scan in





Before we talk about sequential 
 Constants
◦ function like constants in a programming 

language
 Their value cannot change during execution

◦ Declared with signals in the architecture’s 
‘declarative section’
 ‘declarative section is after the ARCHITECTURE 

line, before BEGIN

◦ Syntax:
 constant constant_name : type := value;

Note the syntax here



VHDL Constants
 Example:

ARCHITECTURE example OF constants IS

CONSTANT SEVEN : STD_LOGIC_VECTOR(6 downto 0) := “1111000”;

BEGIN

HEX0 <= SEVEN;

:
:

 Write the constant declaration for an 8-bit 
standard logic vector equivalent to AAH



Constants with 7-segment display

 Seven Segment displays
 HEX0(0) = a
 HEX0(1) = b
 :
 :
 HEX0(6) = g

◦ 0 is ON  : 1 is OFF

constant ZERO : std_logic_vector(6 downto 0) := "1000000";

segment g is off, all other segments are on



Sequential VHDL code
 Consists of one or more process 

statements
◦ Each process is a concurrent statement
◦ All processes execute simultaneously
◦ Processes communicate using signals
◦ Statements within a process are executed 

sequentially
◦ Most common structures are:
 If-then-else
 case



Processes
 A concurrent statement that is comprised 

of sequential statements
◦ Sequential statements are evaluated in 

sequence and their order is critical
◦ *NOTE* all signal assignments are made 

concurrently at the END of process 
execution. Signals assigned in the process are 
not available for reading in the same process

Example: Process()
BEGIN

a <= ‘1’;
If (a= ‘1’) then …. Which branch is taken?
Else …. 

END process;



Processes
 Syntax

[process_label:]  PROCESS [(sensitivity_list)] [IS]
{process_declarative_item}

BEGIN
{sequential_statement}

END PROCESS [process_label];

 Sensitivity list
◦ List of signals that the process is sensitive to
◦ The process will execute when one of the 

signals in the list has an event (changes value)
◦ All signals that are read in the process should 

be included
◦ Do not include signals not used in the process



Sensitivity list (con’t)
 Process execution in simulation is in an 

endless loop
◦ Execution starts when a signal in the 

sensitivity list has an event
◦ Execution suspends when the last statement 

is completed

 In simulation, all processes are evaluated 
at the same time - concurrency



Case Statements
 Use to select one sequence of statements 

for execution from a number of alternatives
◦ Similar to a C ‘switch’ structure
◦ Synthesizes to a MUX
◦ Selection is based on the value of a single 

expression
CASE (expression) IS

WHEN choices => sequence of statements
{WHEN choices => sequence of statements}

END CASE;

◦ A list of choices can be associated with one 
branch
 Separate choices with |



Case example
ENTITY xor_2 IS

PORT( a, b : IN STD_LOGIC;
c    : OUT STD_LOGIC);

END xor_2;

ARCHITECTURE behavioral OF xor_2 IS
SIGNAL inputs : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN
inputs <= a & b;
ex_or:  PROCESS(inputs) 

BEGIN
CASE  inputs IS

WHEN “01” => c <= ‘1’;
WHEN “10” => c <= ‘1’;
WHEN OTHERS => c <= ‘0’;

END CASE;
END PROCESS;

END behavioral;



Case Example (shortened)
ENTITY xor_2 IS

PORT( a, b : IN STD_LOGIC;
c    : OUT STD_LOGIC);

END xor_2;

ARCHITECTURE behavioral OF xor_2 IS
SIGNAL inputs : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN
inputs <= a & b;
ex_or:  PROCESS(inputs) 

BEGIN
CASE  inputs IS

WHEN “01”  | “10” => c <= ‘1’;
WHEN OTHERS => c <= ‘0’;

END CASE;
END PROCESS;

END behavioral;



Case (con’t)
 Others choice
◦ Some compilers require WHEN OTHERS => 

as the last choice
◦ Some only require it if the set of choices does 

not cover every possible value of the case 
expression
◦ CYA and always include it
◦ It has to be the last branch



Mux Example
 Consider the following Mux

 Write the architecture
◦ Using a case statement

A

B

C

D

S0

S1

Y

S1 S0 Y

0 0 A

0 1 B

1 0 C

1 1 D



IF Statements
 Selects one or none of its alternative 

sequence of statements depending on the 
value of each branch’s condition
◦ Priority based on order of if – elsif conditions

IF condition THEN
sequence of statements

{ELSIF condition THEN
sequence of statements}

[ELSE
sequence of statements]

END IF;



If Statements (con’t)
 The condition must evaluate to a boolean

true or false
◦ IF ((a=‘1’) AND (b=‘0’)) THEN

 The ELSE statement is not necessarily 
optional
◦ If a signal is assigned a value in any branch, it 

must be assigned a value in all branches
◦ When a signal is not assigned a value in all 

branches, a latch is inferred
◦ Inferred latches are bad. Don’t worry, the 

synthesis tool will give you a warning



If Statements (con’t)
ARCHITECTURE xyz OF xor_2 IS
BEGIN

PROCESS (a, b)
BEGIN

IF a /= b then 
c <= ‘1’;

ELSE
c <= ‘0’;

END IF;
END PROCESS;

END xyz;

ARCHITECTURE xyz OF xor_2 IS
BEGIN

PROCESS (a, b)
BEGIN

IF a /= b then 
c <= ‘1’;

END IF;
END PROCESS;

END xyz;



Signal assignments in processes
 Signals take the last value they are assigned in a 

process
 Assignments are made concurrently at the end of 

process execution
 Default assignments can be used to shorten IF 

statements
ARCHITECTURE xyz OF xor_2 IS
BEGIN     

PROCESS (a, b)
BEGIN

c <= ‘0’;   -- this is the default assignment
IF a /= b then 

c <= ‘1’;  -- c is only re-assigned if a /= b
END IF;

END PROCESS;
END xyz;
 In this example it is okay to have an IF without and ELSE



Mux Example
 Consider the following Mux

 Write the architecture
◦ Using an if statement

A

B

C

D

S0

S1

Y

S1 S0 Y

0 0 A

0 1 B

1 0 C

1 1 D
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