Revisiting Important VHDL
Concepts

Announcements

* Homework #5 due Wednesday

* Quiz Wednesday on VHDL arithmetic

° If you missed last Wednesday, read the notes
and ask questions

* Group homework Evals due 9/6
> Please fill out one for each group member.

° If all group members agree, you may remain in
your current groups.

From the top
 What VHDL is

> A hardware description language used to
describe digital hardware

> It can also be used for ?

e WhatVHDL is not

° |t is not a programming language like C, Java
or Python

Major difference from programming
language

* Programming languages are sequential
e VHDL is !

> What does mean?

> How does that affect the order of statements
inVHDL?

> When is VHDL sequential?

Sequential Statements

* IF and CASE statements need to go in a
!

* The statement gets executed when a
signal in the changes.

> Which signals go in this list?
Any signal on the right hand side of an assignment
Any signal being evaluated in the IF or CASE

> Which signals do not go in this list?

Output signals (on the left hand side of an
assignment statement)

A Common Mistake

e A common problem is to not include a needed
signal on a sensitivity list:
process (A, S)
begin
if (S="I") then
Y <=A;
else
Y <= B;
end process;
e This is implementing a 2 to | mux. Signal B has
been left off the sensitivity list by mistake.

* if S = 0 already and a change occurs on B, this
change will not be propagated to the Y output!

* This can be hard to debug — be careful with
sensitivity lists!

Signal assignments in Processes

* When are outputs assigned in the
process!?

e Is this allowed? Why or why not?

ARCHITECTURE xyz OF xor_2 IS
BEGIN
PROCESS (a, b)
BEGIN
c <=0}
IF a /= b then
c <=1,
END IF;
END PROCESS;
END xyz;

Why order matters

comb: process(nickel_in, dime_in, quarter_in, money, dispense_in, coin_return,
current_state)

begin
case current_state is
when wait| => This is a real
if nickel_in ="I" then example.What
next_state <= nickel; happens if money
elsif dime_in ="'l" then

is greater than 75
but the user is
trying to insert a
nickel?

next_state <= dime;
elsif quarter_in ="'l" then

next state <= quarter;

elsif coin_return ="'l' then

next_state <= change;
elsif money > 75 then

next_state <= enough;
else next_state <= waitl;

end if;

Rules to live by

* One output per process

o This is a standard adopted by the ECTET
department.

° Processes are free — use as many as you want
> The number of processes does not affect the
final implementation. However

Less chance of unintentionally creating a latch

Higher probability that that process can be re-used
in a future design

Rules to live by

e If you assign a signal in one branch of a
case or an if you must assign it in all
branches.

> If not, latch is created

> Latches are not good
Can lead to instability

Can lead to undesired functionality

> Check you synthesis WARNINGS. If it
indicates a latch, you must fix it.

Bad Example

* What is wrong with the following?

ARCHITECTURE behawvioral OF fulladd IS
SIGHNAL inputs : 5TD LOGIC VECTOR (2 DOWNTO 0);
BEGIN
inputs <= ¥ &8 ¥ & Cimn:
bad: PROCESS (inputs) IS

BEEGIN
CASE inputs IS
WHEH ™001™| ™010™ | ™100™ | ™11i"™ =>
5 <= '1"';
WHEHW "011" | ™101™ | ™11Q0™ | ™111i" =>
Cout <= "'1"';
WHEHN CTHERS =>
5 <= '0"';
Cout <= '0°';
END CASE;

END PFROCESS;
END behavioral:

Good Example
* Longer code does not necessarily mean

more circuitry.

ARCHITECTURE behavioral OF fulladd IS
SIGHNAL inputs STD LOGIC VECTOR (2 DOWNTC 0);

BEGIN
inputs <= X & Y & Cin;

PROCESS [inputs) IS5
BEGIN
CASE inputs IS5
WHEN ™001™|
5 <= "'1";
WHEN OTHERS =>
5 <= '0";

E=s=:

m111m =>

"|:|1|:|" | "1|:||:|"

END CASE;

END PROCESS:

PROCESS (inputs) IS

Carryout:
BEGIN
CASE inputs IS5
WHEN ™0i11™
Cout <=
WHEN OTHERS =>
Cout <= '0';
END CASE;
END PRCCESS:;
END behavioral:;

mi11m =>

Frllﬂ"

Frlﬂl"
L] 1 L] ;

Re-Use

e Think of each process as a functional
block

o If it only has one output, there is more of a
chance you can use it again in another project

o If it has two unrelated outputs, it becomes
specific to the current application

Output Ports

e Output ports represent a pin
> They have no memory

> They cannot be read

Bad Example

e This will generate the following error:

e _detector_ bad.vhd
interface object "First" of mode out cannot be read. Change object mode to buffer.
or, 0 warnings
ings
library IEEE;
use IEEE.std logic 1164.a211
]JEntity Name Detector IS
] FPort{ be, 2, b, c, d, e :IN STD LOGIC:
3 First OUT S5TD LOGIC)

END Name_DetectDr;

!!!

Jirchitecture Mix of HName Detector IS5

] Begin
First «=

END Mi=:

* What should you do? (hint do not change

mode to buffer)

HOT (a COR
First <= First 4N

b OR d} AND (o LN

L ba:

Good Example

» Best solution is to work with internal
signals and then assign internal signals to
the outputs

library IEEE:;
use IEEE.=std logic 11é64.all;

Entity Name Detector IS5
Port(b6, a, b, c, d, e {IN 5TD LOGIC:
First (0UT STD LOGIC);
END Name Detector;

S P A B R R R L RS EREEEEEEEEEEEEEEEEEREEEREEEEEEEEEEEEEEREEESS;

Erchitecture Mix of Name Detector IS5
Signal int first : 3TD LOGIC;
Begin
int first <= NOT(a CR b CR d) AND (c AND e);
First <= int first AND b6;
END Mix:

Concatenation and reverse

e Concatenation combines individual signals

into a vector (or bus)
SIGNAL buss : STD_LOGIC_VECTOR(5 downto 0);

Buss<=a &b &c&d&e&f;
* What if you want to reverse concatenate!

> Say you have a vector internally but you have
individual output ports

a <= buss(5);

b <= buss(4);

c <= buss(3);

d <= buss(2);

Etc;

Synthesis

* What is synthesis!?

e Can allVHDL be synthesized!?

° If not, what is the exception?

e If your code compiles and synthesizes
does that mean it is correct and you are
done!

Which leads us to

e Simulation
> Used to verify the operation of the circuit

° Inputs can be in the form of:
Waveforms — cumbersome with large circuits
VHDL testbench — preferred method

> Qutputs can be in the form of:

Waveforms — inspect visually or with self checking
testbench

File — we will not cover this

What is important now

e Remember that the testbench code is separate
from your design code (you will have 2 .vhd

files)
* The module you are testing is brought into the
testbench as a component.

o Referred to as the UUT or DUT — Unit Under Test
or Device Under Test.

* The component declaration must match your
design entity exactly

* The UUT name must match the component
name

e The port map signals must match the
component ports exactly

Example:

Just read the comments

ARCHITECTURE test OF phone number displayer tb IS

-—- Component Declaration for the Unit Under Test (UUT)

COMPONENT phone number displayer --the component name must mptch your lab4 entity name
PORT (
X : IN std logic; --these port names must match your
N : IN std logic; --entity port names exactly
Z : IN std logic;
W IN std logic;
output case : OUT std logic vector (¢ downto 0);
output if : OUT std logic vector (6 downto 0)

) ;
END COMPONENT ;

--Inputs
SIGNAL inputs : std logic vector (3 DOWNTO 0); -—-this vector will drive the inputs

--Outputs
SIGNAL output case tb : std_logic_vector(G downto 0);
SIGNAL output if tb : std logic vector(¢ downto 0);--these names can be anything

Example (con’t)

BEGIN
-- Instantiate the Unit Under Test (UUT)
-— on left of => are the names of your component's ports above
-- on the right of => are the signals that they map to
uut : phone number displayer PORT MAP (

X => inputs(3),

y inputs(2?),

4 inputs (1),

W inputs(0),

output case => output case tb,
output if => outpu

)

Change this name to match your component too

Testbench code vs. design code

e Process triggering

> A process can be triggered by resumption after a wait
statement or by an event on a signal in its sensitivity
list:

process (a, b, s)
begin Sensitivity list for process — process executed
when an event occurs on any signal in this list

end process;

process
begin Process with no sensitivity list will always be

triggered initially at time O.

Wiait for 10 ns; -——
Suspend for 10 ns

end process;

Rules for Processes

o If a process has a sensitivity list, then it
cannot contain a ‘wait’ statement.

* If a process without a sensitivity list ‘falls
out the bottom’ then it immediately
loops back to the top until it hits a wait
statement.

> How do we prevent this in a testbench?

Questions??

	Revisiting Important VHDL Concepts
	Announcements
	From the top
	Major difference from programming language
	Sequential Statements
	A Common Mistake
	Signal assignments in Processes
	Why order matters
	Rules to live by
	Rules to live by
	Bad Example
	Good Example
	Re-Use
	Output Ports
	Bad Example
	Good Example
	Concatenation and reverse
	Synthesis
	Which leads us to ….
	What is important now
	Example:
	Example (con’t)
	Testbench code vs. design code
	Rules for Processes
	Questions??

