
Revisiting Important VHDL
Concepts

Announcements
 Homework #5 due Wednesday

 Quiz Wednesday on VHDL arithmetic
◦ If you missed last Wednesday, read the notes

and ask questions

 Group homework Evals due 9/6
◦ Please fill out one for each group member.
◦ If all group members agree, you may remain in

your current groups.

From the top
 What VHDL is
◦ A hardware description language used to

describe digital hardware
◦ It can also be used for ___________?

 What VHDL is not
◦ It is not a programming language like C, Java

or Python

Major difference from programming
language

 Programming languages are sequential
 VHDL is __________________?
◦ What does ____________ mean?
◦ How does that affect the order of statements

in VHDL?
◦ When is VHDL sequential?

Sequential Statements
 IF and CASE statements need to go in a

________________?
 The statement gets executed when a

signal in the ______________ changes.
◦ Which signals go in this list?
 Any signal on the right hand side of an assignment
 Any signal being evaluated in the IF or CASE

◦ Which signals do not go in this list?
 Output signals (on the left hand side of an

assignment statement)

A Common Mistake
 A common problem is to not include a needed

signal on a sensitivity list:
process (A, S)

begin
if (S = ‘1’) then

Y <= A;
else

Y <= B;
end process;

 This is implementing a 2 to 1 mux. Signal B has
been left off the sensitivity list by mistake.

 if S = 0 already and a change occurs on B, this
change will not be propagated to the Y output!

 This can be hard to debug – be careful with
sensitivity lists!

Signal assignments in Processes
 When are outputs assigned in the

process?
 Is this allowed? Why or why not?
ARCHITECTURE xyz OF xor_2 IS
BEGIN

PROCESS (a, b)
BEGIN

c <= ‘0’;
IF a /= b then

c <= ‘1’;
END IF;

END PROCESS;
END xyz;

Why order matters
comb: process(nickel_in, dime_in, quarter_in, money, dispense_in, coin_return,
current_state)

begin

case current_state is

when wait1 =>

if nickel_in = '1' then

next_state <= nickel;

elsif dime_in = '1' then

next_state <= dime;

elsif quarter_in = '1' then

next_state <= quarter;

elsif coin_return = '1' then

next_state <= change;

elsif money > 75 then

next_state <= enough;

else next_state <= wait1;

end if;

This is a real
example. What
happens if money
is greater than 75
but the user is
trying to insert a
nickel?

Rules to live by
 One output per process
◦ This is a standard adopted by the ECTET

department.
◦ Processes are free – use as many as you want
◦ The number of processes does not affect the

final implementation. However ….
 Less chance of unintentionally creating a latch
 Higher probability that that process can be re-used

in a future design

Rules to live by
 If you assign a signal in one branch of a

case or an if you must assign it in all
branches.
◦ If not, latch is created
◦ Latches are not good
 Can lead to instability
 Can lead to undesired functionality

◦ Check you synthesis WARNINGS. If it
indicates a latch, you must fix it.

Bad Example

 What is wrong with the following?

Good Example
 Longer code does not necessarily mean

more circuitry.

Re-Use
 Think of each process as a functional

block
◦ If it only has one output, there is more of a

chance you can use it again in another project
◦ If it has two unrelated outputs, it becomes

specific to the current application

Output Ports
 Output ports represent a pin
◦ They have no memory
◦ They cannot be read

Bad Example

 This will generate the following error:

 What should you do? (hint do not change
mode to buffer)

Good Example
 Best solution is to work with internal

signals and then assign internal signals to
the outputs

Concatenation and reverse
 Concatenation combines individual signals

into a vector (or bus)
SIGNAL buss : STD_LOGIC_VECTOR(5 downto 0);
:
Buss <= a & b & c & d & e & f;

 What if you want to reverse concatenate?
◦ Say you have a vector internally but you have

individual output ports
a <= buss(5);
b <= buss(4);
c <= buss(3);
d <= buss(2);
Etc;

Synthesis

 What is synthesis?

 Can all VHDL be synthesized?
◦ If not, what is the exception?

 If your code compiles and synthesizes
does that mean it is correct and you are
done?

Which leads us to ….
 Simulation
◦ Used to verify the operation of the circuit
◦ Inputs can be in the form of:
 Waveforms – cumbersome with large circuits
 VHDL testbench – preferred method

◦ Outputs can be in the form of:
 Waveforms – inspect visually or with self checking

testbench
 File – we will not cover this

What is important now
 Remember that the testbench code is separate

from your design code (you will have 2 .vhd
files)

 The module you are testing is brought into the
testbench as a component.
◦ Referred to as the UUT or DUT – Unit Under Test

or Device Under Test.
 The component declaration must match your

design entity exactly
 The UUT name must match the component

name
 The port map signals must match the

component ports exactly

Example:
Just read the comments

Example (con’t)

Change this name to match your component too

Testbench code vs. design code
 Process triggering
◦ A process can be triggered by resumption after a wait

statement or by an event on a signal in its sensitivity
list:

process (a, b, s)
begin
…..

end process;

process
begin

…..
Wait for 10 ns;
…..

end process;

Sensitivity list for process – process executed
when an event occurs on any signal in this list

Process with no sensitivity list will always be
triggered initially at time 0.

Suspend for 10 ns

Rules for Processes
 If a process has a sensitivity list, then it

cannot contain a ‘wait’ statement.
 If a process without a sensitivity list ‘falls

out the bottom’ then it immediately
loops back to the top until it hits a wait
statement.
◦ How do we prevent this in a testbench?

Questions??

	Revisiting Important VHDL Concepts
	Announcements
	From the top
	Major difference from programming language
	Sequential Statements
	A Common Mistake
	Signal assignments in Processes
	Why order matters
	Rules to live by
	Rules to live by
	Bad Example
	Good Example
	Re-Use
	Output Ports
	Bad Example
	Good Example
	Concatenation and reverse
	Synthesis
	Which leads us to ….
	What is important now
	Example:
	Example (con’t)
	Testbench code vs. design code
	Rules for Processes
	Questions??

