
Number Systems

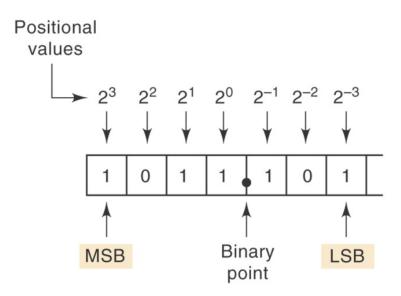
Number Systems

- Understanding digital systems requires an understanding of the decimal, binary, and hexadecimal numbering systems.
- Number systems differ in the amount of symbols they use
 - Decimal : Base 10;
 - 10 symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
 - Binary : Base 2;
 - 2 symbols (0, 1)
 - Hexadecimal : Base 16
 - 16 symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Decimal Number Systems

- The Decimal (base 10) System
 - 10 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
 - Each number is a digit (from Latin for finger).
 - Most Significant Digit (MSD) & Least Significant Digit (LSD).

Decimal Number Systems


• Example: 5702₁₀ _____ subscript represents base

Digit	5	7	0	2		
weighting	103	102	101	100		
value	5×1000	7×100	0×10	2xI		
	5000 + 700 + 0 + 2 = 5702					

 What would the equation look like for 15,702?

Binary Number Systems

- The Binary (base 2) System
 - 2 symbols: 0, I
 - Each number is a bit
 - Most Significant Bit (MSB) & Least Significant Bit (LSB).

 Binary lends itself to electronic circuit design since only two different voltage levels are required

Converting Binary to Decimal

- Each digit is multiplied by the corresponding power of 2
 - The next 3 years will be a lot easier if you memorize the powers of 2 NOW.

28	27	2 ⁶	2 ⁵	2 ⁴	23	2 ²	21	20
256	128	64	32	16	8	4	2	1

• Example: 1101 1001₂

Digit	I	I	0	I	I	0	0	I
Weighting	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	21	20
	128	+ 64	+	16 +	8		+ 2	+ =

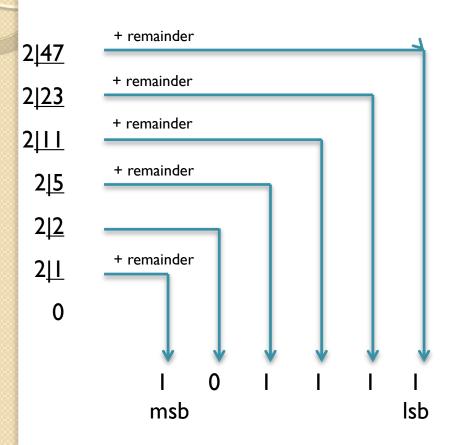
Decimal to Binary

- Converting binary to decimal is easy (provided you memorized the powers of 2)
- You must also know the powers of 2 to convert decimal to binary
- Example: convert 358₁₀ to binary

```
\begin{array}{r}
358 \\
\underline{-256} \\
102 \\
\underline{-64} \\
38 \\
\underline{-32} \\
-32 \\
-32 \\
-2 \\
2 \\
2
\\
2
\\
2
\\
2
\\
1

\begin{array}{r}
358_{10} = 1 \ 0110 \ 0110_{2} \\
0 \\
1 \\
0
\end{array}
```

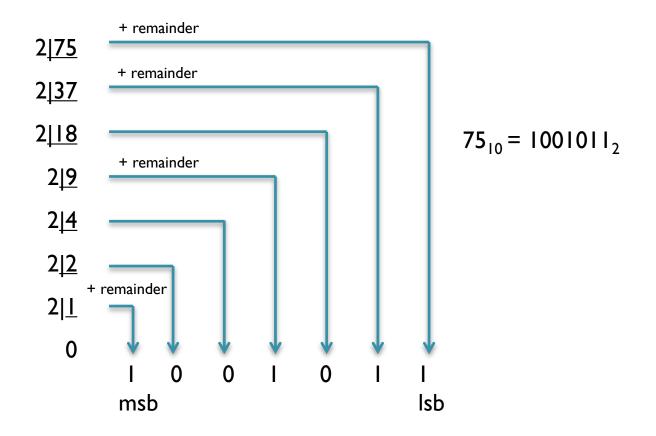
I	0	I	I	0	0			0
28	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	20


Decimal to Binary Conversion

Convert 373₁₀ to binary

```
\begin{array}{rcl}
373 \\
-256 & => 2^8 \\
117 \\
-64 & => 2^6 \\
53 & & & & & & \\
372 & = 101110101 \\
-32 & => 2^5 \\
21 \\
-16 & => 2^4 \\
5 \\
-4 & => 2^2 \\
1 \\
-1 & => 2^0 \\
0
\end{array}
```

Decimal to Binary Method #2


Successively divide by 2

$$47_{10} = 10 1111_{2}$$

Decimal to Binary Conversion

 Convert 75 to binary using the successive division method.

Hex Numbering System

- Base 16
- 16 digits
 - (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)
 - Hex is very common
 - 1/4 the digits of binary
 - More intuitive than binary
 - Guess what you should do?

Decimal	Binary	Hex
0	0000	0
I	0001	I
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
П	1011	В
12	1100	С
13	1101	D
14	1110	E
15	Ш	F

Hex Conversions

- Binary to Hex
 - Divide binary number into groups of four bits (starting from the lsb)
 - Write the equivalent Hex digits
 - \circ 1010001101011₂ = 1 0100 0110 1011₂ = 146B₁₆
- Hex to Binary
 - Convert each hex digit to its 4-bit binary code
 - 73AB₁₆ = 111 0011 1010 1011₂
- Hex to decimal
 - Multiply each digit by its weighting factor (power of 16)
 - \circ 73AB₁₆ = (7x16³) + (3x16²) + (10x16) + 11 = 29,611₁₀