PWM MODES IN ALL 3 TIMERS

PWM Timer modes & waveforms: (pay attention to OCRnx registers controlling the ‘pulse width” and
corresponding OCnx pins (physical pin) at which output is observed)

Timer0 — mode 3:

Period = 256 * (N/16Mhz) Period = 256 * (N/16Mhz)
Pulse width = (OCROA+1) * (N/16Mhz) OR Pulse width = (OCROB +1) * (N/16Mhz)
Output on OCOA Output on OCOB

Timer0 — mode 7:

Period = (OCROA + 1) * (N/16Mhz)
Pulse width = (OCROB+1) * (N/16Mhz)
Output on OCOB

Timer2 — mode 3:

Period = 256 * (N/16Mhz) Period = 256 * (N/16Mhz)
Pulse width = (OCR2A+1) * (N/16Mhz) ~ OR Pulse width = (OCR2B+1) * (N/16Mhz)
Output on OC2A Output on OC2B

Timer2 — mode 7:

Period = (OCR2A+1) * (N/16Mhz)
Pulse width = (OCR2B+1) * (N/16Mhz)
Output on OC2B

PWM MODES IN ALL 3 TIMERS

Timerl — mode 5:

Period = 256 * (N/16Mhz)
Pulse width = (OCR1A+1) * (N/16M OR
Output on OC1A

Timerl — mode 6:

Period = 256 * (N/16Mhz)
Pulse width = (OCR1B+1) * (N/16Mhz)
Output on OC1B

Period =512 * (N/16Mhz)
Pulse width = (OCR1A+1) * (N/16m OR
Output on OC1A

Timerl —mode 7:

Period =512 * (N/16Mhz)
Pulse width = (OCR1B+1) * (N/16Mhz)
Output on OC1B

Period = 1024 * (N/16Mhz)
Pulse width = (OCR1A+1) * (N/16Mhz) OR
Output on OC1A

Timerl — mode 14:

Period = 1024 * (N/16Mhz)
Pulse width = (OCR1B+1) * (N/16Mhz)
Output on OC1B

Period = ICR1 * (N/16Mhz)
Pulse width = (OCR1A+1) * (N/16Mhz) OR
Output on OC1A

Period = ICR1 * (N/16Mhz)
Pulse width = (OCR1B+1) * (N/16Mhz)
Output on OC1B

PWM MODES IN ALL 3 TIMERS

Timerl — mode 15:

Period = (OCR1A+1) * (N/16Mhz)
Pulse width = (OCR1B+1) * (N/16Mhz)
Output on OC1B

Output Pins:

OCOA —PD6 : TCCROA = 100000xx
OCOB - PD5 : TCCROA = 001000xx
OC2A - PB3 : TCCR2A = 100000xx
OC2B-PD3 : TCCR2A = 001000xx
OC1A—-PB1 : TCCR1A =100000xx
OC1B - PB2 : TCCR1A = 001000xx

‘xx’ bit positions will vary based on mode configured (modes of PWM)

Servo motor datasheet

Vcc=Red (+) - ©

Ground=Brown (=) —

1-2ms
Duty Cycle
4.8V (~5V) i
Power
and Signal ™ | :
20 ms (50 Hz)
PWM Period

Position "0" (1.5 ms pulse) is middle, "90" (~2 ms pulse) is all the way to the right, "-90" (~1
ms pulse) is all the way to the left.

NOTE: A servo motor needs a 20 ms period. Timer0 and Timer2 can only produce PWM with a max
period of ~16ms (255%(1024/16MHz)). Use timerl in modes 14 or 15 when controlling a servo motor.

PWM MODES IN ALL 3 TIMERS

Setting PWM modes:

Setting up the timer(s) with proper mode is done using ‘WGMxn’ bits found in TCCRxA and TCCRxB

registers (Both registers need to set-up, to properly configure the timer)

Timer0 and Timer2:

15.9.1 TCCROA - Timer/Counter Control Register A

Bit 7 G b5 4 3 2 1 L]
0x24 (0x44) | COMOA1 | COMOAO | COMOB1 | COMOBO | - - | WGMoi | wGMoo | Tccroa
ReadWrite AV AW AW AW = R AW AW
Initial Value 0 0 0 0 4] [} 0 0
15.9.2 TCCROB - Timer/Counter Control Register B
Bit 7 -] [4 3 2 1 0
0x25(0x45) | FOCOA | FOCOB | - - | wemoz | cso2 | o NCso0 | Tccros
ReadWrite W W AW =T i 3
Initial Value 0 0] \ 0 ’ 0
n
Upc TOV Fla
TOP ocC Set on'"!®)
OxFF Immn MAX
1 0 0 1 E‘:"M’ Phase OxFF 1 BOTTOM
rrect
2 0 1 0 CTC OCRA Imn MAX
] 0 1 i Fast PWM / OxFF BO MAX
4 1 0 0 Reserved / -
— 1 0 . PWM< BOTTOM
Correc
€ 1 1 0 Reserved - - -
— 1 1 i Fast PWM \ QOCRA BOTTOM TOP

PWM MODES IN ALL 3 TIMERS

Timerl:

16.11.1 TCCR1A - Timer/Counteri Control Register A

Bit i 6 5 4 3 2 1 0
{0x80) | comiai | comiAo | comiBi | comiBo | - - WGMi1 | wGmio | Tccria
ReadWrite RW RwW RwW RW R R RW RW
Initial Value 0 o 4] o o o] 0 0

16.11.2 TCCR1B - Timer/Counter1 Control Register B

Bit T G 5 4 3 2 1]
(0x81) Fone | cest | = WGMis | WGMi2 | CSi2 | Cs112 si0] TccriB
ReadWrite RW RW R RMW AW RW B
Initial Value 0 4] o o 0 4] o 1]
T
r/Counter Mode of f | TOV1 Flag
WGM13 (CTC1) | (PWM11) | (PWM10) peration TOP t | Seton
0 0 0 0 0 Normal OxFFFF e | MAX
1 0 0 0 1 PWM, Phase Correct, 8-bit Ox00FF BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit Ox03FF BOTTOM
4 0 1 0 0 CTC OCR1A e MAX
-5 0 1 0 1 Fast PWM, 8-bit O0xD0FF TOP
6 0 1 1 0 Fast PWNT, 9jt Ox01FF TOP
7 0 1 1 1 Fast PWM, 10-oit Ox03FF TOP
g 1 0 0 0 PWM, Phase end Frequency ICR1 BOTTOM
Correct p
9 1 0 0 1 E‘:}I\::\gaPhase Td Frequey L n BOTTOM
10 1 0 1 0 PWM, Phase @0rrect \ BOTTOM
11 1 0 1 1 PWM, Phase dorrect OCR1A TOP BOTTOM
12 1 1 0 0 CTC CR1 Immediate MAX
13 1 1 0 1 (Reserved) - - -
—j 1 1 1 0 Fast PWM | ICR1 BOTTOM TOP
15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

Setting up a Timer: step-by-step guide
Before you get to program a timer module, based on your requirements (projects/HW/Lab activity), you
would need the following information before hand:

1. Which Timer should | use?

2. What mode do | want to run the timer?

3. Which prescaler value will enable me to generate desired signal?

4. For the provided objective, what do | want my ‘Compare Output (OCnx)’ pins to do?

PWM MODES IN ALL 3 TIMERS

Which method am | using to check the status of my timer — Polling or Interrupts?

a. If using Interrupts, be sure to set corresponding ‘Interrupt Enable’ bit to ‘1’

b. If using Polling, make sure to clear corresponding ‘flag’, by writing ‘logic 1’ to its bit

position.

If using Interrupts, what does my ISR do?

a. ISRs are functions, that will never be called in ‘void loop()’ section of code

b. ISRs are a function that do not take in arguments, nor return arguments

c. NO ‘Serial.printin()’, NO ‘delay()’ inside your ISR — remember ‘Get IN & Get OUT’
Based on the mode selected, what ‘count’ values (to be loaded onto OCRnx registers) will provide
me with the desired signal?
When do | start my timer (by loading appropriate ‘count’ value to corresponding register - based
on the mode selected), that would result in obtaining desired signal/timing?

Programming a Timer: (follows the previous step-by-step guide)

Now that we have all the necessary information, let see how to translate the information into values to
be loaded onto corresponding registers:

a.

Once you have decided on which timer (0/1/2) to use, your next step is to set-up the timer for
appropriate mode
Setting mode: Across all timers, the bit fileds {WGMxn}' control the operational mode selection.
For 8-bit Timers (0/2), mode selection is controlled by {WGMx2, WGMx1, WGMxO0} bits found in
TCCRxA and TCCRxB register. {WGM13, WGM12, WGM11, WGM10} bits found in TCCR1A and
TCCR1B registers control the mode selection for Timer 1.
i Record the appropriate values to be set at ‘WGMxn’ bits to enable the desired mode
(record these values on a paper or a document)
Based on the prescaler value selected, bits {CSx2, CSx1, CSx0} will need to be set to appropriate
values. Bits {CSx2, CSx1, CSx0} are part of TCCRxB register across all Timers (0/1/2).
i Record the values to be set at ‘CSxn’ bits for appropriate prescaler value.
Based on your requirement, you would need to use {COMxA1, COMxAO, COMxB1, COMxBO0} bits
found in TCCRxA register, to configure how do you want the output signal to be represented (HIGH
during ‘Duty Cycle’ or LOW during ‘Duty Cycle’) on Channels A/B of OCnx pins
i You would only set the bits for the channel that you expect the output from (Channel A
or Channel B or both channels)
ii. Record the values to be set at {COMxA1, COMxAO, COMxB1, COMxBO0} bits

NOTE: If you have stepped through the above steps successfully, Kudos! — You have now set-up a timer
for your application (but it hasn’t started yet). Setting the mode, prescaler value, and signal representation
at output pin, is done in TCCRxA and TCCRxB register for all timers (0/1/2)

e.

If you have decided to use Interrupts for your application, you would need to enable the
corresponding mode’s ‘Interrupt Enable’ bit found in ‘TIMSKX’ register.
i Based on which channel (A/B) you expect the output, its corresponding ‘Interrupt
Enable’ bit — ‘OCIEXA/OCIExB’ should be set to ‘1’
ii. Before you enable the interrupts, make sure to disable global interrupts, and re-enable
global interrupts immediately.

PWM MODES IN ALL 3 TIMERS

f. Writing ISR: ISRs are functions that gets automatically executed when an event
(internal/external) triggers the corresponding interrupt. Though ISRs are functions, they do not
take ‘input arguments’ nor ‘return arguments’.

i. Variables updated from within the ISR, and accessed in ‘void loop()’ will need to be
declared as a global variable — IS THIS SUFFICIENT?
ii. Your code within ISR should be an absolute minimum code that does a very specific task
(turn OFF LEDs, read SENSOR data, update a flag variable). Do not have print statements
and delay() functions within your ISR
NOTE: At this point, your timer is ready to be started. Also at this point you would have recorded the
values to be set at each individual bit positions (for mode, prescaler, output representation, interrupt
enable) for TCCRxA, TCCRxB, and TIMSKXx (if needed).

g. Obtaining ‘counts’: For PWM mode operation of timers, you would need the count values that
dictate the ‘pulse width’ (Duty Cycle) of your output PWM signal. In certain modes (mode-7 for
timers 0 and 2, and mode-14,15 for timer 1) you would need the count value for your ‘desired
period’ (PWM period).

i Using the formula (ref. timing diagrams above) to obtain the ‘count’ values to achieve
required ‘pulse width’ and ‘period’
ii. If using mode-3 of 8-bit timers, mode-5,6,7 of 16-bit timers — record the value of
‘counts’ for ‘pulse width’
iii. If using mode-7 of 8-bit timers, or mode-14,15 of 16-bit timers — record the value of
‘counts’ for both ‘pulse width’ and ‘period’
h. Starting Timers: At this point in programming, your timer is ready to be started. Loading the
‘count’ value onto corresponding register will start the timer module’s function
i. To modify your output pulse’s duty cycle during run-time, you can re-load the ‘OCRxA/B’
registers with appropriate count values corresponding to your desired ‘pulse width’
ii. If you choose to modify the ‘pulse width’ — it is a best practice to disable the timer
interrupts (if enabled) before loading the new count values. Remember to enable the
timer interrupts again.

Coding with Datasheet:
If you had followed the steps described above, you will have all the bit positions/registers that needs to
be updated — recorded with its appropriate value to be set. You will have identified the values for:
1. Mode selection Bits (WGMxx)
Prescaler section bits (CSxx)
Configuration for Compare Output Pins (COMxA[1:0]/COMxB[1:0])
Interrupt Enable bits (if required)
‘count’ values for ‘pulse width’/ ‘period’

vk wnN

Armed with these information, your next stop should be your datasheet. Open the datasheet and head
to Timers section. Locate the timer you have selected, and land at ‘Register Description’ section (ref.
timer datasheet handouts provided).
a. Start with the first register (TCCRxA). Looking at the datasheet, start populating the bit values
(on a scratch sheet) in the appropriate location. Once you have determined the values in all 8 bit
positions, load the binary bit pattern to TCCRxA register

PWM MODES IN ALL 3 TIMERS

7 (] 5 4 3 2 1 0
| COM2A1 | COM2AD COM2B1 | COM2B0 | - J - [WGM21 | WGM20] TCCR2A
RW R/W RAW RW R R RW RW
values>| o | o | 1 | o | o [o | 1 [1]

b. Follow the same process for TCCRxB register. Populate the bit fields with appropriate values and
load the binary value to the register

7 6 5 4 3 2 1 0
I FOC2A | FOC2B | - | = | wWGMz22 | Ccs22 | Cs21 | CS20 I TCCR2B
w w R R RW RW RW RW
values>] o | o | o [o [1 | o | 1 | o]

c. Enable interrupts (if necessary). In your datasheet locate the ‘TIMSK’ register. Populate the bit
values for individual field, and load the binary value to the register

7 6 5 4 3 2 1 0
= T - 1 - 1 - | - | OCE2B | OCIE2A | TOIE2]| TIMsK2
R R R R R RIW RIW RAW
[values=] o [o [o [o | o | 1 | o | o]

d. Depending on the mode selected, load the determined ‘count’ values for ‘pulse width’/ ‘period’
into appropriate registers (ref. timing diagram above). This should start your timer.

7 6 5 4 3 2 1 0
| OCR2A[7:0] | OCR2A
RW R/W R/W R/W RW RW RW R/W
7 6 5 4 3 2 1 0
| OCR2B(7:0] | OCR2B
RW R/W RW RW RW RW RW RW

NOTE:
e If using the ‘OCnx’ pins to generate signal, you should set-up the pin as ‘OUTPUT’

PWM MODES IN ALL 3 TIMERS

void setup() {

}

Il SET {WGM21,WGM20} to ‘1’ for mode 7 - fast PWM
/ISET {COM2B1,COM2B0} to {1,0} for non-inverting PWM signal

TCCR2A = 0b00100011;

IISET {€C822,CS$21,CS20} to {0,1,0} for prescaler value ‘8’
IISET {WGM22} bit to “1’ for mode 7 — fast PWM

If necessary, enable

TCC R2B - 0b00001 01 0, \%interrupts as next statement
llLoad ‘OCR2A’ with value for total period (0.1 msec) - ‘T
OCR2A = 200;

llLoad ‘OCR2B’ with value Tr ‘Ton’ period (0.065 msec)

— - <— Move this statement to start
OC R2B - 1 30’ your timer where needed

//Setup pin ‘OC2B’ as OUTPUT

DDRD |= 0b00001000;

void loop() {

}

