

# Laboratory 5: Hardware Add and Subtract [8 bit] with State Machine

### **1** INTRODUCTION

In the last lab you created a basic 3 bit add/sub circuit that used the DE1 SoC switches for inputs A and B. Due to the fact that the system did not keep track of any 'state', both A and B inputs had to be selected at the same time, thus limiting the size of the add/sub circuit. In this lab we will make use of the concept of 'state' and enter values of A and B one at a time. You will be creating an 8 bit add/sub circuit and displaying the result on the seven segment display.

- 1. On reset, shall enter the 'input\_a' state and input 8 bits for the first input of the add/sub circuit via the slide switches and display the value on 3 seven segment displays.
- 2. Upon pressing a button, shall enter the 'input\_b' state and input 8 bits for the first input of the add/sub circuit via the slide switches and display the value on 3 seven segment displays.
- 3. Upon pressing a button again, shall enter the 'disp\_sum' state and the sum of A and B shall be displayed on 3 seven segment displays.
- Upon pressing a button again, shall enter the 'disp\_diff' state and the difference of A and B shall be displayed on
  3 seven segment displays.
- 5. Upon pressing a button again, shall enter the 'input\_a' state and operate as described above.
- 6. Shall have an active high reset switch.
- 7. Shall operate with unsigned base 512 numbers. Ex. 0 1 = 511
- 8. All inputs shall be synchronized with the 50 MHz clock.
- 9. All 3 seven segment displays shall display a maximum decimal number of 999. [Although 512 is max realistically].
- 10. Shall display the present state via 4 LEDs.

# 2 PRE-LAB [BLOCK DIAGRAM]

You shall create a block diagram with a state transition diagram accurately mapping out your design which is due 1 hour before lab in the myCourses dropbox. Failing to submit an electronic version to dropbox 1 hour before the lab will result in a zero for the prelab. Also bring a printout of the block diagram to your lab class for an open discussion. Make sure to include proper synchronization, edge detection, and signal names in your diagram as well as a clear notation indicating the bit width of various busses. A state transition diagram is also required.

## **3** SIMULATION

Create a simulation that tests out the below use cases. You do not need to use assertions for this lab. I have posted my double\_dabble.vhd file which is a process that converts a 12 bit binary number to 3 seven segment display nibbles. You will need this code to adequately display the std\_logic\_vectors via the 3 seven segment displays.

| A   | В   | SUM | DIFF |
|-----|-----|-----|------|
| 5   | 2   | 7   | 3    |
| 2   | 5   | 7   | 509  |
| 200 | 100 | 300 | 100  |
| 100 | 200 | 300 | 412  |

## 4 HARDWARE

Target your design onto the DE1 SoC and receive a signoff. To save you time, I posted my compile.tcl file that lists the pin assignments that I used.

### **5** DELIVERABLES

To receive full credit for this lab one must hand in the below items no later than 168 hrs [7 days] after the start of one's lab session. Signoffs can be obtained after the due date as long as the time stamp of the code is from before the deadline.

- □ Hard copy of this document.
- □ Hard copy of all src files [no tabs and print from notepad++ with 'show symbols' on].

### 6 SIGNOFFS

| Category      | Initials | Date | Points |
|---------------|----------|------|--------|
| Block Diagram |          |      | /20    |
| Simulation    |          |      | /30    |
| Demonstration |          |      | /40    |
| Deliverable   |          |      | /10    |
| Final Grade   |          |      | /100   |