
CPET-561 Embedded Systems Design I

__

__
Audio Demo

Education Objective
The educational objective of this demo is to become familiar with IP cores used to interface
with the audio CODEC provided on the DE1-SoC board.

Technical Objective
The technical objective of this laboratory is to design an embedded system for the Nios II
processor and DE1-SoC that will load an audio (.wav) file into the external SDRAM and
play it through the audio CODEC and an attached speaker.

Demonstration Procedure

1. Download the Audio_Demo_Support_Files from MyCourses and unzip the folder.

2. Create a folder named Audio_Demo and within it create a folder named
Audio_Demo_quartus.

3. Create a new Quartus project and name it Audio_Demo. Put the nios_system.qsys file
and the Audio_Demo.vhd file in the Audio_Demo_quartus folder.

4. Open QYSYS and load the nios_system.qsys file. This system has many of the standard
components. New for this demo are:

a. The audio_video_config_component – this is a core that communicates with the
CODEC via the I2C bus. It initializes the CODEC when the design is programmed
into the FPGA.

b. The audio component – this core manages the reads from CODEC (for
microphone data) and the writes to the CODEC (for speaker data)

Additionally there is an SDRAM controller for interfacing with the off-FPGA SDRAM.
We will use that for storing the audio data to be played. Because the SDRAM is being
used, the clock source core is used to provide the SDRAM clock at a 3 ns offset from the
50MHz clock. The onchip memory is used for the source code storage (you can tell
because it is connected to the instruction master). Finally, an interval time (timer_0) is
included as a periodic interrupt generator. It has been configured to fire an interrupt
every 20.48 us (1/sample_rate).

5. Generate the QSYS. There will be 1 warning, but it is okay to ignore. Do not connect the
interrupt from the audio core.

6. In Quartus add the nios_system.qip file and the Audio_Demo.vhd file to the project.
Import the pin assignments. Compile and program the board.

7. Open NIOS II Software Build Tools for Eclipse. Be sure to point your workspace to the
Audio_Demo_quartus/software folder. Create a new application and BSP from template.

CPET-561 Embedded Systems Design I

__

__
Audio Demo

Call the app Audio_Demo_App. Be sure to select the correct nios_system .sopcinfo file
from the Audio_Demo_quartus folder.

8. Move the Audio_Demo.c and the .wav file to the application folder. Copy the system.h
file from the BSP to the App.

9. Open the BST editor (right click on Audio_Demo_App_bsp > NIOS II > bsp editor).
Click on the “Software Packages” tab and click to enable alter_hostfs. This will allow
you to read a file from the computer via the C program.

10. Click on the “Linker Script” tab and left click on each reference to
new_sdram_controller_0 in Linker region names area and change them to
onchip_memory. This will ensure that all of the code exists in onchip memory so it does
not get overwritten when the audio data is loaded into SRAM.

11. Generate the BSP, copy the system.h file and build the project.

12. Right click on the application and choose Debug As > NIOS II hardware

13. In the debug perspective, click on Resume. The program will go away for a LONG time.
It is loading the file from the file system to the SDRAM. Be patient.

14. You will know when it is done loading when you see the message “file read”. Be sure
your headphones are plugged into the green audio port ON YOUR BOARD! You
should also hear audio at this point.

15. Be sure to edit the C program to change the FIRST_TIME def from 1 to 0. If you don’t
do this, the file will load every time you try to run the program. The data will remain in
the SDRAM as long as the board remains on.

16. Look in the Audio_Demo.vhd file and you will see where I have provided a mechanism
to view the CODEC signals on GPIO pins. View the audio sample clock and data on the
oscilloscope. Review the C code to understand how the samples are stored and retrieved
from SDRAM.

17. Demonstrate the audio output playing over headphones or speakers. Record video and
submit to dropbox.

18. Save everything as we will be coming back to this next week.

