![image-20200115160404149](image-20200115160404149.png) In this instance, assuming traditional current $$ I_{R2}=2mA \\ I_{R1}=1mA \\I_{R3}=1mA $$ But there’s nothing saying you can’t do it in a different direction and just say its negative. Now that we’ve established that, back to the original problem. # Example 1 (note, the positive and negative are switched in the below diagram) ![image-20200113163253802](image-20200113163253802.png) Givens: $$ V_+=V_-\\ I_+=0=I_- $$ There’s three major nodes. There is the positive side of the op amp, the output, and the minus. The output is the only side that has current. Ultimate goal: Find $I_L$ We know $I_L={6V \over 2k\Omega}=3mA$. But why now, do the nodal in all locations, recommend starting with the top. $$ 0={V_--0 \over 2k\Omega}+{V_--V_O \over 2k\Omega}\\ V_O=2V_-\\ V_+={V_O\over 2}=V_-\\ 0={{V_O\over 2}-6V\over 2k\Omega}+{{V_O\over 2}-0V\over 1.2k\Omega}+{{V_O\over 2}-V_O\over 2k\Omega}\\ 0=\cancel{V_O\over 2}-6V-\cancel{V_O\over 2}+{\cancel{2k\Omega} \over 1.2\cancel {k\Omega}}({V_O\over \cancel{2}})\\ 6V*1.2=V_O=7.2V\\ {V_+ \over 1.2k\Omega}=i_L\\ {3.6V\over 1.2k\Omega}=i_L=3mA\\ QED $$ # Inverting Amplifier Goal: Find ${V_O\over V_{in}}$ ![image-20200115163502894](image-20200115163502894.png) $$ 0={0-V_{in} \over 12k\Omega}+{0-V_o \over 180k\Omega}\\ V_{O}=15V_{in}\\ {V_O \over V_in}=15\\ QED $$ # Non-ideal op-amp ![image-20200115164231523](image-20200115164231523.png) So, we can guess that$V_O=0$. Then you become the $V_{CC}$, but it doesn’t make sense. So, guess $V_O=0=2V$. Then… uh… moving on. Ulimately, the op-amp has finite gain. Ultimately, $V_+\approx V_-$. This leads to $V_-$ to be some number close to 2V. The output will be pretty much 2V. This is known as the ==***Voltage Follower***==. The 2V input is the peak of a sine wave, and the output will get worse as frequency increases.