# ***Skyler MacDougall*** ## ***Homework 1: Due 1/20/2020*** ### Chapter 2 1. Consider the circuit of Figure P2-1 with $R_i=10k\Omega$ and $R_f=50k\Omega$ ![hw1Q1](hw1Q1.png) 1. Determine the closed-loop voltage gain. $$ A_{CL}={V_o\over V_i}={R_f\over R_i}=-5 $$ 2. Determine the input impedance of the circuit. $$ r_i=R_i=10k\Omega $$ 3. Determine the ideal output impedance of the circuit. $$ r_o=0\Omega $$ 4. Determine the peak input voltage $v_i$ (peak) for which linear operation is possible. $$ V_{ipk}={V_{sat}\over |A_{CL}|}=({13\over 5})or(2{3\over 5}) $$ 5. Determine the output voltage for each of the following values for the following input voltages. $$ V_o=A_{CL}v_i $$ | $v_i$ (V) | $v_o$ (V) | | --------- | --------- | | 0 | 0 | | -1 | 5 | | 2 | -10 | | -3 | 15 | | 4 | -20 | 3. Consider the circuit of Figure P2-3 with $R_i=10k\Omega$ and $R_f=50k\Omega$ ![hw1Q3](hw1Q3.png) 1. Determine the closed-loop voltage gain. $$ A_{CL}={V_o\over V_i}={R_f+R_i\over R_i}={6\over 5} $$ 2. Determine the input impedance of the circuit. $$ r_i=R_i=10k\Omega $$ 3. Determine the ideal output impedance of the circuit. $$ r_o=0\Omega $$ 4. Determine the peak input voltage $v_i$ (peak) for which linear operation is possible. $$ V_{ipk}={V_{sat}\over |A_{CL}|}=({13(5)\over 6})or(10{5\over 6}) $$ 5. Determine the output voltage for each of the following values for the following input voltages. $$ V_o=A_{CL}v_i $$ | $v_i$ (V) | $v_o$ (V) | | --------- | ------------ | | 0 | 0 | | -1 | $-6\over5$ | | 2 | $12\over5$ | | -3 | $-18\over 5$ | | 4 | $24\over 5$ | 5. For the circuit of Problem 2-1 with $v_i=-2V$, assume an external load of $R_L =2k\Omega$ is connected to the output. Determine the total op-amp output current. $$ A{CL}=-10\\ v_i=2V\\ v_0=-20V\\ {V\over R}=I\\ {20V\over 2k\Omega}=I={1\over100}A=10mA $$