
Skyler MacDougall

Homework 1: Due 1/20/2020

Chapter 2

1. Consider the circuit of Figure P2-1 with $R_i=10k\Omega$ and $R_f=50k\Omega$

1. Determine the closed-loop voltage gain.

$$A_{CL} = \frac{V_o}{V_i} = \frac{R_f}{R_i} = -5 \tag{1}$$

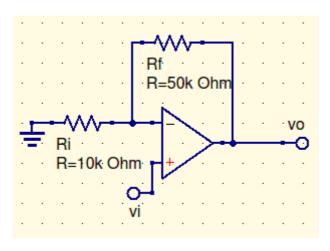
2. Determine the input impedance of the circuit.

$$r_i = R_i = 10k\Omega \tag{2}$$

3. Determine the ideal output impedance of the circuit.

$$r_o = 0\Omega \tag{3}$$

4. Determine the peak input voltage v_i (peak) for which linear operation is possible.


$$V_{ipk} = \frac{V_{sat}}{|A_{CL}|} = (\frac{13}{5})or(2\frac{3}{5})$$
 (4)

5. Determine the output voltage for each of the following values for the following input voltages.

$$V_o = A_{CL} v_i \tag{5}$$

v_i (V)	v_o (V)
0	0
-1	5
2	-10
-3	15
4	-20

3. Consider the circuit of Figure P2-3 with $R_i=10k\Omega$ and $R_f=50k\Omega$

1. Determine the closed-loop voltage gain.

$$A_{CL} = \frac{V_o}{V_i} = \frac{R_f + R_i}{R_i} = \frac{6}{5} \tag{6}$$

2. Determine the input impedance of the circuit.

$$r_i = R_i = 10k\Omega \tag{7}$$

3. Determine the ideal output impedance of the circuit.

$$r_o = 0\Omega \tag{8}$$

4. Determine the peak input voltage v_i (peak) for which linear operation is possible.

$$V_{ipk} = \frac{V_{sat}}{|A_{CL}|} = (\frac{13(5)}{6})or(10\frac{5}{6})$$
(9)

5. Determine the output voltage for each of the following values for the following input voltages.

$$V_o = A_{CL} v_i \tag{10}$$

v_i (V)	v_o (V)
0	0
-1	$\frac{-6}{5}$
2	$\frac{12}{5}$
-3	$\frac{-18}{5}$
4	$\frac{24}{5}$

5. For the circuit of Problem 2-1 with $v_i=-2V$, assume an external load of $R_L=2k\Omega$ is connected to the output. Determine the total op-amp output current.

$$ACL = -10$$

$$v_i = 2V$$

$$v_0 = -20V$$

$$\frac{V}{R} = I$$

$$\frac{20V}{2k\Omega} = I = \frac{1}{100}A = 10mA$$

$$(11)$$