# Skyler MacDougall ## Homework 4: Due 2/10/2020 9. Given the circuit below: ![hw4q9](hw4.assets/hw4q9.png) 1. Determine the noise gain ($K_n$) for the circuit. $$ K_n={1\over \beta};\ \beta={R_i\over R_i+R_f}\\ K_n={68k\Omega+2k\Omega\over2k\Omega}\\ \overline{\underline{|K_n=35|}} $$ 2. Use the result to calculate the exact signal gain at DC and low frequencies if $A_o=10^5$. $$ K_n={1\over \beta};\ \beta={1\over 35}\\ A_{CL}={A_o\over1+A_o\beta}={10^5\over1+(10^5)({1\over35})}\\ \overline{\underline{|A_{CL}=3.9998\approx4|}} $$ 11. Given the circuit below: ![](hw4.assets/hw4q11.png) 1. Determine the noise gain ($K_n$) for the circuit. $$ K_n={1\over\beta};\ \beta={R_i\over R_i+R_f};\ R_i=12k\Omega||24k\Omega=8k\Omega\\ K_n={8k\Omega+120k\Omega\over8k\Omega}\\ \overline{\underline{|K_n=16|}} $$ 2. Use the result to calculate the exact gain factors for the two signals if $A_o=5\times 10^4$. $$ K_n={1\over \beta};\ \beta={1\over 16}\\ A_{CL}={A_o\over1+A_o\beta}={5\times10^4\over1+(5\times10^4)({1\over16})}\\ \overline{\underline{|A_{CL}=15.9949\approx16|}} $$ 13. For the circuit shown in problem 9, assume the following: $$ V_{io}=1.2mV\\ I_b=60nA\\ I_{io}=8nA $$ 1. Determine the magnitude of the output DC voltage $|V_{o1}|$ produced by the input offset voltage. $$ V_{o1}=V_{io}(\alpha);\ \alpha={R_f\over R_i+R_f}={34\over35}\\ V_{o1}=1.2mV({34\over35})\\ \overline{\underline{|V_{o1}=1.6mV|}} $$ 2. With $R_c=0$ determine the magnitude of the output dc voltage $|V_{o2}|$ produced by the input bias currents. $$ V_{o2}=R_c(\alpha)i_b^+-R_f(I_b^2);\ R_c=0\\ i_{io}=i_b^+-i_b^-;\ i_b={i_b^++i_b^-\over2}\\ 8nA=i_b^+-i_b^-;\ 120nA=i_b^++i_b^-\\ i_b^+=64nA;\ i_b^-=56nA\\[16pt] V_{o2}=0-68k\Omega(56nA)\\ \overline{\underline{|V_{o2}=-3.808mV|}} $$ 3. Determine the optimum value of $R_c$. $$ R_{c_{ideal}}=2k\Omega||68k\Omega\\ \overline{\underline{|R_{c_{ideal}}=1.94k\Omega|}} $$ 4. Given your new value for $R_c$, find $|V_{o2}|$. $$ V_{o2}=R_c(\alpha)i_b^+-R_f(I_b^2);\ R_c=0;\ i_b^+=64nA;\ i_b^-=56nA\\ V_{o2}=1.94k\Omega({34\over35})(64nA)-3.808mV\\ \overline{\underline{|V_{o2}=-3.688V|}} $$ 25. An op-amp is used at DC and very low frequencies. A closed loop gain of 200 is required. Specifications indicate that the error due to finite open loop gain cannot exceed 0.1%. Determine the minimum value of the DC open loop gain required. I am unsure how to do this problem. It feels like there is not enough information do this problem, but I can’t seem to wrap my head around it. 27. Assume the design of problem 25, with the following additional parameters: $$ DC\ output\ due\ to\ input\ offset\ voltage \le100mV\\ DC\ output\ due\ to\ input\ offset\ current \le5mV\\ $$ 1. Determine the maximum value of input offset voltage allowed for the op-amp. 2. When an op-amp is selected to meet the requirements for the above, assume that $I_{io}=12\mu A$. Calculate the maximum value of $R_f$ permitted, assuming that a compensating resistors will be used. Due to this question being directly related to question 25, I cannot do this question either.