## **Skyler MacDougall**

## Homework 4: Due 2/10/2020

9. Given the circuit below:



1. Determine the noise gain  $(K_n)$  for the circuit.

$$K_{n} = \frac{1}{\beta}; \ \beta = \frac{R_{i}}{R_{i} + R_{f}}$$

$$K_{n} = \frac{68k\Omega + 2k\Omega}{2k\Omega}$$

$$\overline{|K_{n} = 35|}$$

$$(1)$$

2. Use the result to calculate the exact signal gain at DC and low frequencies if  $A_o=10^5.$ 

$$K_{n} = \frac{1}{\beta}; \ \beta = \frac{1}{35}$$

$$A_{CL} = \frac{A_{o}}{1 + A_{o}\beta} = \frac{10^{5}}{1 + (10^{5})(\frac{1}{35})}$$

$$\overline{|A_{CL} = 3.9998 \approx 4|}$$
(2)

11. Given the circuit below:



1. Determine the noise gain  $(K_n)$  for the circuit.

$$K_{n} = \frac{1}{\beta}; \ \beta = \frac{R_{i}}{R_{i} + R_{f}}; \ R_{i} = 12k\Omega||24k\Omega = 8k\Omega$$
 (3)  
$$K_{n} = \frac{8k\Omega + 120k\Omega}{8k\Omega}$$
$$\overline{|K_{n} = 16|}$$

2. Use the result to calculate the exact gain factors for the two signals if  $A_o=5 imes10^4.$ 

$$K_{n} = \frac{1}{\beta}; \ \beta = \frac{1}{16}$$

$$A_{CL} = \frac{A_{o}}{1 + A_{o}\beta} = \frac{5 \times 10^{4}}{1 + (5 \times 10^{4})(\frac{1}{16})}$$

$$\underline{|A_{CL} = 15.9949 \approx 16|}$$

$$(4)$$

13. For the circuit shown in problem 9, assume the following:

$$V_{io} = 1.2mV$$

$$I_b = 60nA$$

$$I_{io} = 8nA$$
(5)

1. Determine the magnitude of the output DC voltage  $\left|V_{o1}\right|$  produced by the input offset voltage.

$$V_{o1} = V_{io}(\alpha); \ \alpha = \frac{R_f}{R_i + R_f} = \frac{34}{35}$$

$$V_{o1} = 1.2mV(\frac{34}{35})$$

$$\overline{|V_{o1} = 1.6mV|}$$
(6)

2. With  $R_c=0$  determine the magnitude of the output dc voltage  $|V_{o2}|$  produced by the input bias currents.

$$V_{o2} = R_c(\alpha)i_b^+ - R_f(I_b^2); R_c = 0$$

$$i_{io} = i_b^+ - i_b^-; i_b = \frac{i_b^+ + i_b^-}{2}$$

$$8nA = i_b^+ - i_b^-; 120nA = i_b^+ + i_b^-$$

$$i_b^+ = 64nA; i_b^- = 56nA$$

$$V_{o2} = 0 - 68k\Omega(56nA)$$

$$\overline{|V_{o2} = -3.808mV|}$$

3. Determine the optimum value of  $R_c$ .

$$R_{c_{ideal}} = 2k\Omega||68k\Omega$$
 (8)
$$|R_{c_{ideal}} = 1.94k\Omega|$$

4. Given your new value for  $R_c$ , find  $|V_{o2}|$ .

$$V_{o2} = R_c(\alpha)i_b^+ - R_f(I_b^2); R_c = 0; i_b^+ = 64nA; i_b^- = 56nA$$
 (9)  
 $V_{o2} = 1.94k\Omega(\frac{34}{35})(64nA) - 3.808mV$ 

$$\overline{|V_{o2} = -3.688V|}$$

25. An op-amp is used at DC and very low frequencies. A closed loop gain of 200 is required. Specifications indicate that the error due to finite open loop gain cannot exceed 0.1%. Determine the minimum value of the DC open loop gain required.

I am unsure how to do this problem. It feels like there is not enough information do this problem, but I can't seem to wrap my head around it.

27. Assume the design of problem 25, with the following additional parameters:

DC output due to input offset voltage 
$$\leq 100mV$$
 (10)  
DC output due to input offset current  $\leq 5mV$ 

- 1. Determine the maximum value of input offset voltage allowed for the op-amp.
- 2. When an op-amp is selected to meet the requirements for the above, assume that  $I_{io}=12\mu A$ . Calculate the maximum value of  $R_f$  permitted, assuming that a compensating resistors will be used.

Due to this question being directly related to question 25, I cannot do this question either.