# Important info for lab Input resistance $R_{in}=R_d(1+A\beta)$ Gain ${V_o \over V_{in}}={A \over 1+A\beta}$ output resistance $r_{out}={r_o\over 1+A\beta}$ $r_d$ is the resistance between the inputs. $r_o$ is the resistance on the output after the source. The source within is represented as $A_v(v_+-v_+)$ ${R_i \over R_i + R_f}=\beta$ is the feedback factor. $\alpha={R_f\over R_i+R_f}$ is the control factor. A is the open-loop gain. (Closed-loop gain is when the output feeds back into the input) $R_i$ is the input resistor $R_f$ is the feedback resistor. It is ALWAYS back to the negative. # Simple feedback op-amp for examples ![image-20200116163421345](image-20200116163421345.png) ## Gain If A is finite, and $r_d$ and $r_o$ are neglected, then the gain = ${R_i+R_f \over R_i}={1\over \beta}$ ## Input resistance $$ goal\\ r_{in}={1V\over I_{in}}\\ .\\ 0={v_-- 0\over R_i}+{v_-- V_{in}\over r_d}+{v_-- V_o\over R_f}\\ i_{in}={1- V_- \over r_d}\\ 0=V_-({R_iR_f+r_dR_f+r_dR_i \over R_ir_dR_f})-{1\over r_d}-{A(1-v_-) \over R_f}\\ 0=V_-({(R_iR_f+r_dR_f+r_dR_i(1-A)) \over R_ir_dR_f})-{1\over r_d}-{A\over R_f}\\ 1-i_{in}r_d=V_-\\ 0=(1-i_{in}\cancel {r_d})({(R_iR_f+r_dR_f+r_dR_i(1-A)) \over R_i\cancel {r_d}R_f})-{1\over r_d}-{A\over R_f}\\ 0=(1-i_{in})(1+{r_d\over R_i}+{r_d(1-A)\over R_f})-{1\over r_d}-{A\over R_f}\\ 0=1-i_{in}+{r_d\over R_i}+{r_d(1-A)\over R_f}-{r_di_{in}\over R_i}-{r_d(1-A)i_{in}\over R_f}-{1\over r_d}-{A\over R_f}\\ i_{in}(1+{r_d\over R_i}+{r_d(1-A)\over R_f})={r_d\over R_i}+{r_d(1-A)\over R_f}-{1\over r_d}-{A\over R_f} $$