1. Draw the circuit of a 3-phase 4160/2400V generator. Note that the generator is in a WYE configured generator. Ignore any generator impedance. Draw this first before moving on. Connect the generator to the primary of a 3-phase transformer. You will only have 3 lines from the generator to the transformer primary. The transformer is rated at 1000kVA, 4160-208/120V, 60Hz. In this step, there is no load on the transformer, the secondary of the transformer is open-circuited. ![](project1.assets/step1.png) 2. Clearly label and determine of the following: 1. $V{generator_{\phi}}$ 2. $V{generator_{line}}$ 3. $V{primary_{\phi}}$ 4. $V{primary_{line}}$ 5. $V{secondary_{\phi}}$ 6. $V{secondary_{line}}$ ![](project1.assets/step2.png) 3. Connect a $1k\Omega$ resistor across each phase of the secondary of the transformer to neutral. Redraw the circuit. ![](project1.assets/step3.png) 4. 1. Determine $V_{load}$ across each resistor. Show this voltage in the circuit diagram. $$ V_\phi=120V=V_{a}\rightarrow V_{neutral}=V_{b}\rightarrow V_{neutral}=V_{c}\rightarrow V_{neutral}\\ \therefore\\ V_{load}=120V $$ 2. Find $I_{load}$ through each resistor. $$ I_{load}={V_{load}\over R}={120V\over1k\Omega}=120mA $$ 3. Determine the current for each line from each of the secondary of the transformer to the load $I_{secondary_{line}}$. $$ I_{load}=I_{secondary_{line}}\\ \therefore\\ I_{secondary_{line}}=120mA $$ 4. Determine $I_{secondary_{\phi}}$. $$ WYE\ config\\\therefore\\I_{secondary_{\phi}}=120mA $$ 5. Determine $I_{primary_{\phi}}$. $$ I_{primary_{\phi}}={I_{secondary_{\phi}}\over a};\ a=34.\overline6\\ I_{primary_{\phi}}={120mA\over 34.\overline6}\approx3.5mA $$ 6. Determine $I_{primary_{line}}$. $$ I_{primary_{line}}=I_{primary_{\phi}}*\sqrt3\\ I_{primary_{line}}=5.996mA\approx6mA $$ 7. Determine $I_{generator_{line}}$. $$ I_{generator_{line}}=I_{primary_{line}}\\\therefore\\I_{generator_{line}}\approx6mA $$ 8. Determine $I_{generator_{\phi}}$. $$ I_{generator_{\phi}}=I_{primary_{\phi}}\\\therefore\\I_{generator_{\phi}}\approx3.5mA $$ ![](project1.assets/step4.png) 5. From the numbers above, determine: 1. $P_{generator_\phi}$ $$ P_\phi=I_\phi V_\phi\\ P_{generator_{\phi}}=3.5mA*4160V\\ P_{generator_{\phi}}=14.4W $$ 2. $P_{generator_{3\phi}}$ $$ P_{3\phi}=3P_\phi\\ P_{generator_{3\phi}}=14.4W*3\\ P_{generator_{3\phi}}\approx43W $$ 3. $P_{primary_\phi}$ $$ P_\phi=I_\phi V_\phi\\ P_{primary_{\phi}}=3.5mA*4160V\\ P_{primary_{\phi}}=14.4W $$ 4. $P_{primary_{3\phi}}$ $$ P_{3\phi}=3P_\phi\\ P_{primary_{3\phi}}=14.4W*3\\ P_{primary_{3\phi}}\approx43W $$ 5. $P_{secondary_\phi}$ $$ P_\phi=I_\phi V_\phi\\ P_{secondary_{\phi}}=120mA*120V\\ P_{secondary_{\phi}}=14.4W $$ 6. $P_{secondary_{3\phi}}$ $$ P_{3\phi}=3P_\phi\\ P_{secondary_{3\phi}}=14.4W*3\\ P_{secondary_{3\phi}}\approx43W $$ 7. $P_{load_\phi}$ $$ P_\phi=I_\phi V_\phi\\ P_{load_{\phi}}=120mA*120V\\ P_{load_{\phi}}=14.4W $$ 8. $P_{load_{3\phi}}$ $$ P_{3\phi}=3P_\phi\\ P_{secondary_{3\phi}}=14.4W*3\\ P_{secondary_{3\phi}}\approx43W $$