Digital Signal Processing

Statistics, Probability and
Noise

Part 2
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Reminders

- Pre-Lecture Quizzes are due before lecture.
See MyCourses for Due Dates

- Homework 01
Complete the set of practice problems

Compare to solutions as a guide to help your
understanding

Complete the Homework 01 Quiz to receive
homework credit and a grade
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Last Class Review

- Signhal Domain
Time, Frequency and Space

- Characterization of signals using statistics
Mean, Variance and Standard Deviation
Variance is the power of the fluctuations around the mean

- Computing Running Variance

- Signal to Noise Ratio and Coefficient of Variation

R I T EEET-425 Digital Signal Processing



Today’s Topics

Random Variables and Typical Error
Adding Random Signals

Process Stationarity

Histograms — Histogram, PMF, PDF
The Normal Distribution

Precision and Accuracy

Digital Noise Generation
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Digital Signal Processing

Random Variables
and
Typical Error
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Random Variables

- Arandom variable is a variable whose values
depend on outcomes of a random phenomenon

- We can describe the variable by its probabillities

- Example: The output voltage from a sensor
can be a random variable. It may consist of a
DC value and some noise.
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Random Variables

The variable has a true mean and a true
variance and standard deviation

When we calculate the average, we are
estimating the value of the true mean

When we calculate the standard deviation, we
are making an estimate of the true standard
deviation
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Estimates of the Mean and
Standard Deviation

- When we estimate the mean there may be an
error between the estimate and the true mean

P

The “hat” indicates it is an estimate
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R I T EEET-425 Digital Signal Processing




Estimates of the Variable
Example

A random variable can be described by its
probabilities. Example

A random variable with a true mean of 6 and a
true standard deviation of 1

We can estimate the mean of the variable using
a test statistic using a set of N samples of the

variable

1 _
=X = ¥ Z is the estimate of the true mean
i=0
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Estimates of the Variable
Example

The estimate of the mean {i may be in error
from the true mean u

How much In error?

We say the “typical” error of the estimates is
the standard deviation of the estimates

Different from the SD of the signal

Function of the true standard deviation and the
number of samples in estimating the mean
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Typical Error Estimate Example

Trivial example -- A process with a true mean of 6

Take one value from the variable and use this as an estimate of the mean
Repeat this 100 times so that we have 100 estimates of the mean.

Plot the estimates of the mean of the variable (using 1 sample of the variable)

Estimates of the Mean -- 1 Samples

Estimates of the Mean -- 1 Samples
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Mean Estimates
[}
Occurances
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’ Typical Error = 0.98164 ‘

3 , . .
0 20 40 60 80 100 3 4 5 6 7 8 9

Samples Mean Estimates
The estimates of the mean are The typical error of the estimates is standard
not exactly the true mean value. deviation of the estimates or 0.982.
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Mean Estimates

9 T T
o /
7t

Typical Error Estimate Example

- Increase the number of samples used to make each estimate to 9
- Plot the estimates of the true mean and compare

Each point is the mean of 9 samples The estimates are now

Estimates of the Mean --93amZ Estimates of the Mean -- 9 Samples Closer to the tr‘Le mean Of

' The typical error is now

Occurances

Py

) 1 0.329
| Typical Error = 0.32857 - - O' . f— O-var
30 26 4|0 66 slo 100 eStlmate \/_
Samples Mean Estimates N
1 1
Oestimate = Y
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Typical Error Estimate Example

- Increase the number of samples used to make each estimate to 100
- Plot the estimates of the true mean and compare

Each point is the mean of 100 samples

The estimates are now even
closer to the true mean of
I 6.

Estimates of the Mean -- #0 Samples 1 Estimates of the Mean -- 100 Samples

. . 1
The typical error is now = 0

Mean Estimates
Occurances
(2]

Al | | - . Ovar
Typical Error = 0.093073 eS tlmate I
L T : VN
0 20 40 60 80 100 3 4 5 6 7 8 9
Samples Mean Estimates 1 1
Oestimate — m = 10
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Typical Error

The “typical error” of the estimate is a function
of the true standard deviation of the variable
and the number of samples used in making the
estimate.

VN

The “typical error” of the estimate decreases by
the square root of the number of samples

Typical Error = Opstimate =
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Law of Large Numbers

The Law of Large Numbers says that as N
approaches infinity, the typical error
approaches O

o
Typical Error = — — 0 for large N
yp N g

Why Is this important?

We can control the amount of error in the
estimate by selecting the number of samples
used In the estimate
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In Class Problem
Typical Error

A variable has a standard deviation of 0 = .15

How many samples N, do | need to use in the
estimate of the mean to have a typical error of
the estimate .01?
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In Class Problem
Typical Error

- A variable has a standard deviation of ¢ = .15

- How many samples do | need to average to
estimate the mean to within a typical error of

017

__ Oprocess

Typical Error = Ouogtimate = N

Solving for N , 15\ 2
o .
N = (H) = (H) = 225 samples
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Example
Typical Error

- Create 225 samples from a variable with u = 1
and o = .15. Estimate u using the average.

- Repeat 100 times and plot the estimates

1 IEstimate|softheMyean--225'Samples' Some estimates are OutSide
1w | of typical error window.

1.04

Estimates of the Mean -- 225 Samples

1.02

Most (= 67%) are within

Mean Estimates
o

S | the error window
0.94 1 21 | . Ovar 015
(DrealFror ™R | | | | Typical Error = = =.01
0 20 4% | 60 80 100 0 0.6 0.8 " E1 it 1.2 1.4 yp \/N V 2 5
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Digital Signal Processing

Adding Random Signals
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The Sum of Random Signals

If two random signals are added their variances
add:

2 _ 2 2
Ototal — 01 + 07

The standard deviation of the combined signal

IS.
_ / 2 2
Ototal = |01 + 03
_ 2 2 01
Ototal — \/01 + 03
0>

The standard deviation is said to add “in
quadrature” as in the sides of a right triangle
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Adding Two Signals with Noise

The mean of the sum of two signals will be the
sum of the means

Utotal = U1 T U2

The standard deviation of the noise of the two
signals will add in quadrature

_ 2 2
Ototal — \/0-1 + 02

R I T EEET-425 Digital Signal Processing



In Class Problem
Adding Two Signals with Noise

Assume two signals with the following
probabilities:

Signal 1 U =2,00=.5
Signal 2 u, =1,0, = 125

Compute their individual SNR’s
Compute the SNR of the sum of the 2 signals
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In Class Problem
Adding Two Signals with Noise

- Assume two signals with the following

probabilities:
Signal 1 U =2,00=.5
Signal 2 u, =1,0, = 125

- Compute their individual SNR’s

_HM_2, _
SNRl—G—l— [c=4
H2 1
SNR, = —= = =
27 g, /125
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In Class Problem
Adding Two Signals with Noise

- Compute the SNR of the sum of the 2 signals
Signal1  py =2,04 = .5 SNR, = 2/_5 = 4

Signal 2y, =1,0,= 125 SNR,=1/,,.=8

-  Then:

Utotal = M1 + Uz = 3 Ototal = \/012 + 022 =.5154

3
SNRtotal —_ ﬁ —_ 5821
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Amplitude

In Class Problem
Adding Two Signals with Noise

Uy =2,00 = .5 Utotar = U1 + Uy =3

U, = 1,0, = 125 Ototal = \/012 + 05 = .5154

Two Signals with Noise Combined Signals with Noise
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R I T EEET-425 Digital Signal Processing NOPRINT




Digital Signal Processing

Process Stationarity
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Non-stationary Processes

‘ a. Changing mean and standard deviation ‘ ‘ b. Changing mean, constant standard deviation ‘
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|
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Sample number Sample number

- If the underlying probabilities change over time the
process is said to be non-stationary

- What is the impact of using short segments (fewer
samples) on the typical error of the mean and standard
deviation?
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Digital Signal Processing

Histograms
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Histograms

Describes the number of samples in the data

set that have the given value.
Example: Samples from a

bit A/D converter

na

b. 128 point histogram
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Histogram With More Data
Samples

- Increasing the number of samples reveals the
underlying distribution, smoother.
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84— b. 128 point histogram ¢. 256,000 point histogram
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Selection of the Number of Bins

| a. Exlample sil gnal |
!
3 | . .
|
| !
: ?W‘ bl AT &UMM‘
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I | E | o
! :
0
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Sample number
8 : : 160 , :
b. Histogram of 601 bins | ¢. Histogram of 9 bins

Number of occurences
o
=

Number of occurences
I=

0 150 300 450 600 Bin number in histogram
Bin number in histogram

Number of bins is too large Number of bins is too small
Poor vertical resolution Poor horizontal resolution
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Selection of the Number of Bins

- A rule of thumb Is to use between 5 and 20 bins

- Another approach is to use Sturge’s rule’

K=1+3.322log, N

Where:
N is the number of samples
K is the number of bins

* https://www.statisticshowto.datasciencecentral.com/choose-bin-sizes-statistics/
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Computing Mean and Variance
from Histogram

- One can estimate the mean and variance from
parameters of the histogram

. H; is the number samples in the it" bin

M- 1 M-
= z Total samples N = — 2
N i=0

M-1
1 . "
=N_1 2 (i —w*H;
1=0
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Number of occurences

Probability Mass Function Vs
Histogram
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c. Probability Density Function (pdf) |
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PDF For Square and Triangle

2 1 1 pdf
a. Square wave ‘

R e Two discrete values with
E equal probability
g
-

&
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0 1é 32 438 64 a0 96 112 127
Time {(or other variable)
2 T T T
. pdf
b. Triangle wave ‘

1
% Equal probability for all
ER values over a range
ot

&

16 32 48 4 a0 L] 112 127
Time (or other variable)
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PDF for Random Noise

- PDF for this signal is a normal distribution

2 ! ! ! ; pdf
c. Random noise |
| | | |
B A -
£ | ”‘ Varying probability density
*é. . | WY centered on the mean
= | B RN U value
1L | AN S -
| T
| | | | |
2 —t
1

0 14 32 4B 64 BO 96 1
Time (or other variable)
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PDF for Uniform Random Noise

- PDF for this signal is a uniform distribution

Uniformally Distributed Random Noise o.55 . Histogram of Unifermally Distribuied Random Noise

nzm-

o
-
wm

Amplitude

o1r

Mumber of Occurances

0 200 400 600 BOO 1000 1200 1400 1600 1800 2000 0 05 1 15 2 25 3 35 4 45 5
Sample Number Amplitude

The PDF is a flat across the amplitude range
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Digital Signal Processing

The Normal Distribution
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Normal Distribution Example

- Many random signals found in nature have a normal

distribution
u=10
O 1 0.3}
1 -w? 5
P(x) = e 2072 0.15
21O

Normal Distribution =10 --0 =1

Centeredat u = 10
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Area under the
curve =1

68.3% of values
fall within +10.

95.5% of values
fall within +20
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Characteristics of the Normal or
Gaussian Distribution

- The likelihood of values far from the mean, e.g. 4 sigma away from

the mean, is very low.

- This is why the signal appears to have a bounded peak to peak
value of 6-8 times sigma (+30 to + 40)

Normal Distribution y =10 --o0 =1

0.35

0.05 - <€

1 1 1
10 1 12 13 14

0 1 1
6 7 8 9
X
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Digital Signal Processing

The Central Limit Theorem
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The Central Limit Theorem

The sum of random processes becomes
normally distributed as more and more of the
random numbers are added together.

True even If the random numbers being added
together are from different probability
distributions
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Central Limit Theorem
MATLAB Example

- Generate 6 uniformly distributed random numbers. Add
them. What is the distribution of the sum?

Histogram of A Uniformly Distributed Value
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| | Sum
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(o) 0
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UNIFORM
RANDOM Distribution of 1 Uniform random variable
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Central Limit Theorem
MATLAB Example

- The sum of two uniform random variables starts to look

somewhat like a normal distribution

Histogram of A Uniformly Distributed Value

UNIFORM
RANDOM

Histogram of Sum of 2 Uniformly Distributed Values
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Central Limit Theorem
MATLAB Example

- The distribution of 6 uniform random variables looks

very much like a normal distribution

Histogram of A Uniformly Distributed Value

UNIFORM
RANDOM

Histogram of Sum of 6 Uniformly Distributed Values

UNIFORM
RANDOM

o
o
o

UNIFORM
RANDOM

% 4 -2 0 2 4 6

| | Value

Distribution of sum of6

Uniform random variables
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Digital Signal Processing

Precision and Accuracy
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Precision and Accuracy

- Accuracy
How close is the estimated mean /i to the true
mean?
Accuracy = il —u
- Precision

How well do the individual measurements or
samples compare with each other?

It is expressed by the Signal to Noise Ratio (SNR)
or by the Coefficient of Variation (CV)

7
CV:EXH)O SNR =
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Precision and Accuracy

Neither Accurate Not Accurate

Nor Precise But Precise
Accurate but Accurate
not Precise And Precise

s ol o _—-
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Precision and Accuracy

- For a normally distributed signal

mean — — true value
N ¥
140 T
-
i : I Accuracy
| |
H
100 .
20 - :

Precision

Number of occurences

500 600 700 &00 900 1000 1100 1200 1300 1400 1500
Ocean depth (meters)
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Digital Signal Processing

Digital Noise Generation
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Digital Noise Generation

Generating random noise is helpful for testing
how DSP algorithms operate in noise

Most programming languages can produce
uniformly distributed random numbers

By adding uniformly distributed random
numbers you can create normally (Gaussian)
distributed random numbers
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Digital Noise Generation

Another approach is to start with a seed value S
Then apply the equation shown here

R = (aS + b) modulo c

The modulo function takes the remainder after
dividing by c
The next seed is the last random value generated

a, b and c are chosen to give good random
characteristics
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Digital Signal Processing

Summary
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Summary of Today

Random Variables and Typical Error

The typical error of an estimate of u is a function
of the true ¢ and the number of samples N

Adding Random Signals
The mean of two signals add algebraically
The SD of two signals add in quadrature
Histograms can help estimate of a PMF or PDF
PMF is for discrete signals, PDF for continuous
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Summary of Today

The Normal Distribution
Many random variables are normally distributed
Use the CDF to compute probabilities

Precision and Accuracy

Precision Is related to standard deviation, can be
express in terms of SNR as well.

Digital Noise Generation

Uniform random variables can be combined
according the Central Limit Theorem to produce a
normally distributed random variable.
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