% File: diffEqReview.tex % Created: 12:36:05 Fri, 27 Aug 2021 EDT % Last Change: 12:36:05 Fri, 27 Aug 2021 EDT % \documentclass[letterpaper]{article} \usepackage{amsmath} \usepackage{graphicx} \usepackage{cancel} \usepackage{amssymb} \usepackage{listings} \usepackage{enumitem} \date{08/27/2021} \title{% Differential Equations Overview\\ \large EEET-427-01: Control Systems} \author{Blizzard MacDougall} \begin{document} \maketitle \pagenumbering{arabic} \section{General Steps} Given $F(x)=G(x)$ \begin{enumerate} \item Solve for roots of function \item Using roots, fill in general solution of $F(x)$ (assuming $G(x)=0$). General solution options: \begin{itemize} \item Real roots ($c_1e^{r_1x}+c_2e^{r_2x}\dots$) \item repeated roots ($c_1e^{r_1x}+c_2xe^{r_1x}\dots$) \item imaginary roots ($e^{\alpha x}(c_1\cos(\beta x)+c_2\sin(\beta x))$) \end{itemize} \item Use initial conditions (if given) to find $c$ values. \item Generalize $G(x)$, take necessary derivatives, and plug in to $F(x)$, solve for coefficients \end{enumerate} \section{Example} \begin{equation} \begin{split} y''+5y'+6y=x^2\\ y''+5y'+6y=0\\ r^2+5r+6=0\\ r=-2,\ -3\\ y_g(x)=c_1e^{-2x}+c_2e^{-3x}\\ G(x)=x^2\\ y_p(x)=Ax^2+Bx+C\\ y'(x)=2Ax+B\\ y''(x)=2A\\ y''+5y'+6y=x^2\\ 2A+5(2Ax+B)+6(Ax^2+Bx+C)=x^2\\ 2A+10Ax+5B+6Ax^2+6Bx+6C=x^2\\ 6Ax^2+(10A+6B)x+(2A+5B+6C)=x^2+0x+0\\ 6A=1\\ 10A+6B=0\\ 2A+5B+6C=0\\ A=\frac16\\ B=-\frac{10}{36}\\ C=\frac{38}{216}\\ y_p(x)=\frac16x^2-\frac{10}{36}x+\frac{38}{216}\\ y(x)=\frac16x^2-\frac{10}{36}x+\frac{38}{216}+c_1e^{-2x}+c_2e^{-3x} \end{split} \end{equation} \end{document}