
Coding Freedom

THE ETHICS AND AESTHETICS

OF HACKING

••

E . G A B R I E L L A C O L E M A N

P R I N C E T O N U N I V E R S I T Y P R E S S

P R I N C E T O N A N D O X F O R D

Copyright © 2013 by Princeton University Press

Creative Commons Attribution- NonCommercial- NoDerivs CC BY- NC- ND

Requests for permission to modify material from this work should be sent to
Permissions, Princeton University Press

Published by Princeton University Press, 41 William Street, Princeton,
New Jersey 08540

In the United Kingdom: Princeton University Press, 6 Oxford Street,
Woodstock, Oxfordshire OX20 1TW

press.princeton.edu

All Rights Reserved

At the time of writing of this book, the references to Internet Web sites (URLs) were accurate.
Neither the author nor Princeton University Press is responsible for URLs that may have

expired or changed since the manuscript was prepared.

Library of Congress Cataloging-in-Publication Data
Coleman, E. Gabriella, 1973–
Coding freedom : the ethics and aesthetics of hacking / E. Gabriella Coleman.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-691-14460-3 (hbk. : alk. paper)—ISBN 978-0-691-14461-0 (pbk.

: alk. paper) 1. Computer hackers. 2. Computer programmers. 3. Computer
programming—Moral and ethical aspects. 4. Computer programming—Social
aspects. 5. Intellectual freedom. I. Title.

HD8039.D37C65 2012
174’.90051--dc23 2012031422

British Library Cataloging- in- Publication Data is available

This book has been composed in Sabon

Printed on acid- free paper. ∞
Printed in the United States of America

1 3 5 7 9 10 8 6 4 2

This book is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE

I N T R O D U C T I O N

A Tale of Two Worlds

••

Free and open- source software (F/OSS) refers to nonproprietary but li-
censed software, much of which is produced by technologists located

around the globe who coordinate development through Internet- based proj-
ects. The developers, hackers, and system administrators who make free
software routinely include the following artifact in the software they write:

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

While seemingly insigni! cant, this warning is quite meaningful for it reveals
something important about the nature of free software and my subsequent
representation of it. This legal notice is no doubt serious, but it also contains
a subtle irony available to those who know about free software. For even
if developers cannot legally guarantee the so- called FITNESS of software,
they know that in many instances free software is often as useful as or in
some cases superior to proprietary software. This fact brings hackers the
same sort of pleasure, satisfaction, and pride that they derive when, and if,
they are given free reign to hack. Further, even though hackers distribute
their free software WITHOUT ANY WARRANTY, the law nevertheless en-
ables them to create the software that many deem superior to proprietary
software— software that they all “hope [. . .] will be useful.” The freedom
to labor within a framework of their own making is enabled by licenses
that cleverly reformat copyright law to prioritize access, distribution, and
circulation. Thus, hackers short- circuit the traditional uses of copyright: the
right to exclude and control.

This artifact points to the GNU General Public License (GPL), an agree-
ment that many hackers know well, for many use it (or other similar li-
censes) to transform their source code— the underlying directions of all
software— into “free software.” A quick gloss of the license, especially its
preamble, reveals a more passionate language about freedom and rights:

Amit Ray

2 I N T RO D U C T I O N

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.1

This type of language spills far beyond licensing agreements. It is routinely
voiced in public discourse and everyday conversation. Such commitments
to freedom, access, and transparency are formalized in a Linux distribution
known as Debian, one of the most famous free software projects. These
values are re# ected in a pair of charters— the Debian Constitution and the
Debian Social Contract— that articulate an organizational vision and for-
mulate a set of promises to the wider free software community. These char-
ters’ names alone unmistakably betray their liberal roots, even if they were
not explicitly created with the goal of “advancing” liberal ideals.

By liberalism, I do not mean what may ! rst come to mind: a political
party in Europe usually associated with politicians who champion free
market solutions, or in the United States, a near synonym for the Demo-
cratic Party. Nor is it just an identity that follows from being a proud, card-
carrying member of the American Civil Liberties Union or Electronic Fron-
tier Foundation, although these certainly can be markers.

Here I take liberalism to embrace historical as well as present- day moral
and political commitments and sensibilities that should be familiar to most
readers: protecting property and civil liberties, promoting individual auton-
omy and tolerance, securing a free press, ruling through limited government
and universal law, and preserving a commitment to equal opportunity and
meritocracy. These principles, which vary over time and place, are realized
institutionally and culturally in various locations at different times. Perhaps
the most famous of these are the institutions of higher education, market
policies set by transnational institutions, and the press, but they are also at
play on the Internet and with computer hackers, such as those who develop
free software.2

The small statement that prefaces the GNU GPL thus hints at two ele-
ments of this community: one is esoteric, and grounded in technology and
its material practices; and the other concerns a broader, culturally familiar
vision of freedom, free speech rights, and liberalism that harks back to con-
stitutional ideals. We should not take either for granted but instead open
them up to critical re# ection, and one route to do so is by bringing them
together. This ethnography takes seriously free software’s visions of liberty
and freedom as well as the mundane artifacts that hackers take pleasure
and joy in creating. In considering them together, important lessons are re-
vealed about the incomplete, sometimes fraught, but nonetheless noticeable

Amit Ray

Amit Ray

Amit Ray

A TA L E O F T WO WO R L D S 3

relationship between hacking and liberalism, and the transformations and
tensions evident within the liberal tradition and computer hacking.

A LI B E R A L CR I T I Q U E W I T H I N L I B E R A L I S M

The terms free and open as applied to software are distinct yet often come
paired. This is in part because they designate the same alternative licenses and
collaborative methodologies, but they differ in their moral orientation: the
term free software foremost emphasizes the right to learn and access knowl-
edge, while open source tends to # ag practical bene! ts.3 Many participants,
whether they are volunteers or corporate employees paid to work on free
software, refer to themselves with pride as hackers— computer a! cionados
driven by an inquisitive passion for tinkering and learning technical systems,
and frequently committed to an ethical version of information freedom.

Although hackers hold multiple motivations for producing their software,
collectively they are committed to productive freedom. This term designates
the institutions, legal devices, and moral codes that hackers have built in
order to autonomously improve on their peers’ work, re! ne their technical
skills, and extend craftlike engineering traditions. This ethnography is cen-
trally concerned with how hackers have built a dense ethical and technical
practice that sustains their productive freedom, and in so doing, how they
extend as well as reformulate key liberal ideals such as access, free speech,
transparency, equal opportunity, publicity, and meritocracy.

I argue that F/OSS draws from and also rearticulates elements of the
liberal tradition. Rather than designating only a set of explicitly held po-
litical, economic, or legal views, I treat liberalism in its cultural registers.4
Free software hackers culturally concretize a number of liberal themes and
sensibilities— for example, through their competitive mutual aid, avid free
speech principles, and implementation of meritocracy along with their fre-
quent challenge to intellectual property provisions. Indeed, the ethical phi-
losophy of F/OSS focuses on the importance of knowledge, self- cultivation,
and self- expression as the vital locus of freedom. Hackers bring these values
into being through an astounding range of social and technical practices,
covered in detail throughout this book.

Because hackers challenge one strain of liberal jurisprudence, intellectual
property, by drawing on and reformulating ideals from another one, free
speech, the arena of F/OSS makes palpable the tensions between two of the
most cherished liberal precepts— both of which have undergone a signi! cant
deepening and widening in recent decades. Thus, in its political dimension,
and even if this point is left unstated by most developers and advocates,
F/OSS represents a liberal critique from within liberalism. Hackers sit simul-
taneously at the center and margins of the liberal tradition.

Amit Ray

Amit Ray

Amit Ray

Amit Ray

Amit Ray

Amit Ray

Amit Ray

Amit Ray

4 I N T RO D U C T I O N

The expansion of intellectual property law, as noted by some authors,
is part and parcel of a broader neoliberal trend to privatize what was once
public or under the state’s aegis, such as health provision, water delivery,
and military services. “Neoliberalism is in the ! rst instance,” writes David
Harvey (2005, 2), “a theory of political economic practices that proposes
human well- being can be best advanced by liberating entrepreneurial free-
doms and skills within an institutional framework characterized by strong
property rights, free markets, and free trade.” As such, free software hackers
not only reveal a long- standing tension within liberal legal rights but also of-
fer a targeted critique of the neoliberal drive to make property out of almost
anything, including software.

While most of this ethnography illustrates how free software hacking
critiques neoliberal trends and reinvents liberal ideals by asserting a strong
conception of productive freedom in the face of intellectual property restric-
tions, it also addresses the material, affective, and aesthetic dimensions of
hacking. In pushing their personal capacities and technologies to new hori-
zons (and encountering many frustrations along the way), hackers experi-
ence the joy that follows from the self- directed realization of skills, goals, and
talents. At times, hacking provides experiences so completely overpowering,
they hold the capacity to shred self- awareness, thus cutting into a particular
conception of the liberal self— autonomous, authentic, and rational— that
these hackers otherwise routinely advance. Thus, at least part of the reason
that hacker ethics takes its liberal form is connected to the aesthetic ex-
periences of hacking, which are informed by (but not reducible to) liberal
idioms and grammars. Hacking, even if tethered to liberal ideologies, spills
beyond and exceeds liberal tenets or liberal notions of personhood, most
often melding with a more romantic sensibility concerned with a heightened
form of individual expression, or in the words of political theorist Nancy
Rosenblum (1987, 41), a “perfect freedom.”

FI E L D W O R K A M O N G HA C K E R S

For most of its history, anthropology stuck close to the study of non-
Western and small- scale societies. This started to shift following a wave of
internal and external critiques that ! rst appeared in the 1960s, expanded in
the 1970s, and peaked in the 1980s. Now referred to as “the critical turn in
anthropology,” the bulk of the critique was leveled against the discipline’s
signature concept: culture. Critics claimed that the notion of culture— as
historically and commonly deployed— worked to portray groups as far
more bounded, coherent, and timeless than they actually are, and worse,
this impoverished rendition led to the omission of topics concerning power,
class, colonialism, and capitalism (Abu- Lughod 1991; Asad 1973; Clifford
1988; Clifford and Marcus 1986; Dirks 1992; Said 1978). Among other

Amit Ray

A TA L E O F T WO WO R L D S 5

effects, the critique cracked open new theoretical and topical vistas for an-
thropological inquiry. An anthropologist like myself, for example, could le-
gitimately enter nontraditional “! eld sites” and address a new set of issues,
which included those of technoscienti! c practice, information technologies,
and other far- # ung global processes stretching from labor migration to
transnational intellectual property regulations.

Partly due to these disciplinary changes, in winter 2000, I left a snowy
Chicago and arrived in a foggy San Francisco to commence what cultural
anthropologists regard as our foundational methodological enterprise: ! eld-
work. Based on the imperative of total immersion, its driving logic is that we
can gain analytic insight by inserting ourselves in the social milieu of those
we seek to understand. Fieldwork mandates long- term research, usually a
year or more, and includes a host of activities such as participating, watch-
ing, listening, recording, data collecting, interviewing, learning different lan-
guages, and asking many questions.

When I told peers of my plan to conduct ! eldwork among hackers, many
people, anthropologists and others, questioned it. How does one conduct
! eldwork among hackers, given that they just hang out by themselves or on
the Internet? Or among those who do not understand the name, given that
they are all “outlaws”? Often playfully mocking me, many of my peers not
only questioned how I would gather data but also routinely suggested that
my ! eldwork would be “so easy” (or “much easier than theirs”) because I
was studying hackers in San Francisco and on the Internet.

The subtext of this light taunting was easy enough to decipher: despite
the transformations in anthropology that partially sanctioned my research
as legitimate, my object of study nonetheless still struck them as patently
atypical. My classmates made use of a socially acceptable medium—
joking— to raise what could not be otherwise discussed openly: that my
subjects of study, primarily North American and European (and some Latin
American) hackers, were perhaps too close to my own cultural world for
critical analysis, or perhaps that the very activity of computing (usually seen
as an instrumental and solitary activity of pure rationality) could be subject
only to thin, anemic cultural meanings.5

By the turn of the twenty- ! rst century, although anthropology had cer-
tainly “reinvented” itself as a ! eld of study— so that it is not only accept-
able but one is in fact, at some level, also actively encouraged to study the
West using new categories of analysis— Michel- Rolph Trouillot (2003, 13)
has proposed that “anthropologists reenter the West cautiously, through the
back door, after paying their dues elsewhere.” As a young, aspiring anthro-
pologist who was simply too keen on studying free software during gradu-
ate school and thus shirked her traditional dues, I knew that for myself as
well as my peers, my project served as an object lesson in what constitutes
an appropriate anthropological “location” (Gupta and Ferguson 1997) for
study— in particular for graduate students and young scholars.

Amit Ray

Amit Ray

6 I N T RO D U C T I O N

I myself wondered how I would ever recognize, much less analyze, forms
of cultural value among a group of mostly men of relatively diverse class
and national backgrounds who voluntarily band together online in order to
create software. Would I have to stretch my ethnographic imagination too
far? Or rely on a purely formal and semiotic analysis of texts and objects— a
methodology I wanted for various reasons to avoid? Amid these fears, I took
some comfort in the idea that, as my peers had indicated, my initial ! eld-
work would be free of much of the awkwardness that follows from thrust-
ing oneself into the everyday lives of those who you seek to study, typically
in an unfamiliar context. At the very least, I could communicate to hackers
in English, live in a familiar and cosmopolitan urban setting, and at the end
of the day, return to the privacy and comfort of my own apartment.

As it turned out, my early ethnographic experiences proved a challenge
in many unexpected ways. The ! rst point of contact, or put more poetically
by Clifford Geertz (1977, 413), “the gust of wind stage” of research, was
harder than I had imagined. Although not always discussed in such frank
terms among anthropologists, showing up at a public gathering, some-
times unannounced, and declaring your intent to stay for months, or pos-
sibly years, is an extraordinarily dif! cult introduction to pull off to a group
of people you seek to formally study. More dif! cult is describing to these
strangers, whose typical understanding of anthropology stems from popular
media representations like the Indiana Jones trilogy, our methodology of
participant observation, which is undertheorized even among anthropolo-
gists.6 Along with the awkwardness I experienced during the ! rst few weeks
of ! eldwork, I was usually one of the only females present during hacker
gatherings, and as a result felt even more out of place. And while I may have
recognized individual words when hackers talked shop with each other—
which accounted for a large percentage of their time— they might as well
have been speaking another language.

At the start of my research period, then, I rarely wanted to leave my
apartment to attend F/OSS hacker social events, user group meetings, or
conferences, or participate on email lists or Internet relay chat channels— all
of which were important sites for my research. But within a few months, my
timidity and ambivalence started to melt away. The reason for this dramatic
change of heart was a surprise to me: it was the abundance of humor and
laughter among hackers. As I learned more about their technical world and
was able to glean their esoteric jokes, I quickly found myself enjoying the
endless stream of jokes they made in all sorts of contexts. During a din-
ner in San Francisco’s Mission district, at the of! ce while interning at the
Electronic Frontier Foundation, or at the monthly gatherings of the Bay
Area Linux User Group held in a large Chinatown restaurant, humor was a
constant bedfellow.

Given the deep, bodily pleasures of laughter, the jovial atmosphere over-
came most social barriers and sources of social discomfort, and allowed me

Amit Ray

Amit Ray

A TA L E O F T WO WO R L D S 7

to feel welcome among the hackers. It soon became clear to me, however,
that this was not done for my bene! t; humor saturates the social world
of hacking. Hackers, I noticed, had an exhaustive ability to “misuse” most
anything and turn it into grist for the humor mill. Once I began to master
the esoteric and technical language of pointers, compilers, RFCs, i386, X86,
AMD64, core dumps, shells, bash, man pages, PGP, GPG, gnupg, OpenPGP,
pipes, world writeable, PCMCIA, chmod, syntactically signi! cant white
space, and so on (and really on and on), a rich terrain of jokes became sen-
sible to me.

My enjoyment of hacker humor thus provided a recursive sense of com-
fort to a novice ethnographer. Along with personally enjoying their joshing
around, my comprehension of their jokes indicated a change in my outsider
status, which also meant I was learning how to read joking in terms of plea-
sure, creativity, and modes of being. Humor is not only the most crystalline
expression of the pleasures of hacking (as I will explore later). It is also a
crucial vehicle for expressing hackers’ peculiar de! nitions of creativity and
individuality, rendering partially visible the technocultural mode of life that
is computer hacking. As with clever technical code, to joke in public al-
lows hackers to conjure their most creative selves— a performative act that
receives public (and indisputable) af! rmation in the moment of laughter.
This expression of wit solidi! es the meaning of archetypal hacker selves:
self- determined and rational individuals who use their well- developed facul-
ties of discrimination and perception to understand the “formal” world—
technical or not— around them with such perspicuity that they can intervene
virtuously within this logical system either for the sake of play, pedagogy,
or technological innovation. In short, they have playfully de! ant attitudes,
which they apply to almost any system in order to repurpose it.

A few months into my research, I believed that the primary anthropologi-
cal contribution of this project would reside in discussing the cultural mores
of computer hacking, such as humor, conjoined with a methodological anal-
ysis of conducting research in the virtual space of bits and bytes. Later in my
! eldwork, I came to see the signi! cance of another issue: the close relation-
ship between the ethics of free software and the normative, much broader
regime of liberalism. Before expanding on this connection, I will ! rst take a
short ethnographic detour to specify when it became unmistakably appar-
ent that this technical domain was a site where liberal ideals, notably free
speech, were not only endowed with concrete meaning but also made the
fault lines and cracks within liberalism palpably visible.

••

It was August 29, 2001, and a typical San Francisco day. The abundant
morning sun and deep blue skies deceptively concealed the reality of much
cooler temperatures. I was attending a protest along with a group of

Amit Ray

Amit Ray

Amit Ray

Amit Ray

8 I N T RO D U C T I O N

about ! fty programmers, system administrators, and free software enthu-
siasts who were demanding the release of a Russian programmer, Dmitry
Sklyarov, arrested weeks earlier in Las Vegas by the Federal Bureau of
Investigation (FBI) as he left Defcon, the largest hacker conference in the
world. Arrested at the behest of the Silicon Valley software giant Adobe,
Sklyarov was charged with violating the recently rati! ed and controver-
sial Digital Millennium Copyright Act (DMCA). He had written a piece
of software, the Advanced eBook Processor software, for his Russian em-
ployer. The application transforms the Adobe eBook format into the Por-
table Document Format (PDF). In order for the software to perform this
conversion, it breaks and therefore circumvents the eBook’s copy control
measures. As such, the software violated the DMCA’s anticircumvention
clause, which states that “no person shall circumvent a technological pro-
tection measure that effectively controls access to a work protected under
this measure.”7

We had marched from the annual LinuxWorld conference being held in
San Francisco’s premier conference center, the Moscone Center, to the fed-
eral prosecutor’s of! ce. Along the way, a few homeless men offered sol-
idarity by raising their ! sts. Two of them asked if we were marching to
“Free Mumia”— an assumption probably in# uenced by the recent string of
protests held in Mumia Abu- Jamal’s honor. Indeed, as I learned soon after
my ! rst arrival in San Francisco, the city is one of the most active training
grounds in the United States for radical activists. This particular spring and
summer was especially abuzz with activity, given the prominence of coun-
terglobalization mobilizations. But this small and intimate demonstration
was not typical among the blizzard of typically left- of- center protests, for
none of the participants had a way of conveying quickly nor coherently
the nature of the arrest, given how it was swimming in an alphabet soup
of acronyms, such as DRM, DMCA, and PDF, as opposed to more familiar
ideas like justice and racism. A few members of our entourage nonetheless
heartily thanked our unlikely though clearly sympathetic supporters, and
assured them that while not as grave as Mumia’s case, Dmitry’s situation
still represented an unfair targeting by a corrupt criminal justice system,
especially since he was facing up to twenty- ! ve years in jail “simply for
writing software.”

Once at the Hall of Justice, an impassioned crew of programmers hud-
dled together and held up signs, such as “Do the Right Thing,” “Coding Is
Not a Crime,” and “Code Is Speech.”

There must have been something about directly witnessing such ! ery out-
pourings among people who tend to shy away from overt forms of political
action that led me to evaluate anew the deceptively simple claim: code is
speech. It dawned on me that day that while I had certainly heard this as-
sertion before (and in fact, I was only hearing it increasingly over time), it
was more signi! cant than I had earlier ! gured. And after some research,

Amit Ray

Amit Ray

A TA L E O F T WO WO R L D S 9

it was clear that while the link between free speech and source code was
fast becoming entrenched as the new technical common sense among many
hackers, its history was remarkably recent. Virtually nonexistent in pub-
lished discourse before the early 1990s, this depiction now circulates widely
and is routinely used to make claims against the indiscriminate application
of intellectual property law to software production.

Early in my research, I was well aware that the production of free soft-
ware was slowly but consistently dismantling the ideological scaffolding
supporting the expansion of copyright and patent law into new realms of
production, especially in the US and transnational context. Once I consid-
ered how hackers question one central pillar of liberal jurisprudence, intel-
lectual property, by reformulating ideals from another one, free speech, it
was evident that hackers also unmistakably revealed the fault line between
two cherished sets of liberal principles.

While the two- hundred- year history of intellectual property has long been
freighted with controversies over the scope, time limits, and purpose of vari-
ous of its instruments (Hesse 2002; Johns 2006, 2010; McGill 2002), legal
scholars have only recently given serious attention to the uneasy coexistence
between free speech and intellectual property principles (McLeod 2007; Ne-
tanel 2008; Nimmer 1970; Tushnet 2004). Copyright law, in granting cre-
ators signi! cant control over the reproduction and circulation of their work,
limits the deployment of copyrighted material in other expressive activity,
and consequently censors the public use of certain forms of expressive con-
tent. Legal scholar Ray Patterson (1968, 224) states this dynamic eloquently
in terms of a clash over the fundamental values of a democratic society:
“A society which has freedom of expression as a basic principle of liberty
restricts that freedom to the extent that it vests ideas with legally protected
property interests.”

Because a commitment to free speech and intellectual property is
housed under the same roof— the US Constitution— the potential for con-
ict has long existed. For most of their legal existence, however, con# ict was

Figure Intro.1. Protesting the DMCA, San Francisco
Photo: Ed Hintz.

Amit Ray

Amit Ray

Amit Ray

Amit Ray

Amit Ray

1 0 I N T RO D U C T I O N

noticeably absent, largely because the scope of both free speech and intel-
lectual property law were more contained than they are today. It was only
during the course of the twentieth- century that the First Amendment and
intellectual property took on the unprecedented symbolic and legal mean-
ings they now command in the United States as well as many other nations.
(Although the United States has the broadest free speech protections in the
world, many other Western nations, even if they limit the scope of speech,
have also expanded free speech and intellectual property protections in the
last ! fty years.)

For example, copyright, which grants authors signi! cant control over
their expression of ideas, was initially limited to fourteen years with one
opportunity for renewal. Today, the copyright term in the United States has
ballooned to the length of the author’s life plus seventy years, while works
for hire get ninety- ! ve years, regardless of the life of the author. The original
registration requirement has also been eliminated. Most any expression— a
scribble on a piece of paper, a blog post, or a song— automatically quali! es
for protection, so long as it represents the author’s creation.

Free speech jurisprudence follows a similar trajectory. Even though
the Constitution famously states that “Congress shall make no law [. . .]
abridging the freedom of speech, or of the press,” during the ! rst half of the
twentieth century the US Supreme Court curtailed many forms of speech,
such as political pamphleteering, that are now taken to represent the heart
and soul of the democratic process. It is thus easy to forget that the current
shape of free speech protections is a fairly recent social development, largely
contained within the last ! fty years (Bollinger and Stone 2002).

Due to the growing friction between free speech and intellectual property,
US courts in the last twenty- ! ve years have openly broached the issue by
asserting that any negative consequences of censoring speech are far out-
weighed by the public bene! t of copyright law. In other words, as a mat-
ter of public policy, copyright law represents an acceptable restriction on
speech because it is the basis for what is designated as “the marketplace of
ideas.”8 The theory animating the marketplace of ideas is that if and when
ideas are allowed to publicly compete with each other, the truth— or in its
less positivist form, the best policy— will become evident.

Given this historical trajectory, the use of F/OSS licenses challenges the
current, intellectual property regime, growing ever more restrictive, and thus
dubbed ominously by one legal scholar as the contemporary motor for “the
second enclosure movement” (Boyle 2003). Many free software developers
do not consider intellectual property instruments as the pivotal stimulus for
a marketplace of ideas and knowledge. Instead, they see them as a form of
restriction so fundamental (or poorly executed) that they need to be coun-
teracted through alternative legal agreements that treat knowledge, inven-
tions, and other creative expressions not as property but rather as speech to
be freely shared, circulated, and modi! ed.

Amit Ray

Amit Ray

Amit Ray

A TA L E O F T WO WO R L D S 1 1

TH E AE S T H E T I C S O F HA C K I N G

If free software hackers render the tensions between two liberal principles
visible, and offer a targeted, if not wholesale, critique of neoliberalism in
challenging intellectual property law (but rarely using the language of neo-
liberalism), their commitment to free speech also puts forth a version of the
liberal person who strays from the dominant ideas of liberal personhood: a
self- interested consumer and rational economic seeker. Among academics,
this has often been placed under the rubric of “possessive individualism,”
de! ned as “those deeply internalized habits of thinking and feeling [. . .]
viewing everything around them primarily as actual or potential commercial
property” (Graeber 2007, 3; see also Macpherson 1962). Among hackers,
selfhood has a distinct register: an autonomous being guided by and com-
mitted to rational thought, critical re# ection, skills, and capacity— a set of
commitments presupposed in the free speech doctrine (Peters 2005).9

However important these expressive and rational impulses are among
programmers, they don’t fully capture the affective stances of hackers, most
notably their deep engagement, sometimes born of frustration, and at other
times born of pleasure, and sometimes, these two converge. Soon after com-
mencing ! eldwork, what I quickly learned is that hacking is characterized
by a con# uence of constant occupational disappointments and personal/
collective joys. As many writers have noted, and as I routinely observed,
hacking, whether in the form of programming, debugging (squashing er-
rors), or running and maintaining systems (such as servers), is consistently
frustrating (Rosenberg 2007; Ullman 2003). Computers/software are con-
stantly malfunctioning, interoperability is frequently a nightmare to realize,
users are often “clueless” about the systems they use (and therefore break
them or require constant help), the rate and pace of technological change
is relentless, and meeting customer expectations is nearly impossible to pull
off predictably. The frustration that generally accompanies the realities of
even mundane technical work is depicted as swimming with sharks in xkcd,
one of the most beloved geeks’ comic strips (! gure Intro.2).

What this comic strip captures is how hackers, as they work, sometimes
swim in seas of frustration. To tinker, solve problems, and produce soft-
ware, especially over one’s lifetime, will invariably be marked by varying
degrees of dif! culties and missteps— a state of laboring that one theorist of
craftspersonship describes as material “resistance” (Sennett 2008). In en-
countering obstacles, adept craftspeople, such as hackers, must also build
an abundant “tolerance for frustration” (ibid., 226), a mode of coping that
at various points will break down, leading, at best, to feelings of frustration,
and at worst, to anguish and even despair and burnout.

Despite these frustrations and perhaps because of them, the craft of hack-
ing demands a deep engagement from hackers, or a state of being most
commonly referred to in the literature as “# ow” (Csikszentmihalyi 1990).

Amit Ray

Amit Ray

Amit Ray

Amit Ray

1 2 I N T RO D U C T I O N

In its more mild and commonplace form, hacker pleasure could be said to
approximate the Aristotelian theory of eudaemonia, de! ned succinctly by
philosopher Martha Nussbaum (2004, 61) as “the unimpeded performance
of the activities that constitute happiness.” In pushing their personal capaci-
ties and skills though playing around with and making technologies, hack-
ers experience the joy that follows from the self- directed realization of skills,
goals, and talents. Indeed, overcoming resistance and solving problems, some

Figure Intro.2. “Success,” xkcd
Credit: Randall Munroe.

Amit Ray

Amit Ray

A TA L E O F T WO WO R L D S 1 3

of them quite baf# ing, is central to the sense of accomplishment and pride
that hackers routinely experience.

Hacker pleasure, however, is not always so staid and controlled; it far
exceeds the pride of eudaemonia. Less frequently, but still occurring often,
hackers experience a more obsessive and blissful state. Hacker descriptions
of immersing themselves in technology remind me of Rainer Maria Rilke’s
terse and beautiful depiction of the passion that drives his intellectual pur-
suits: “All the soarings of my mind begin in my blood.” This form of plea-
sure approximates what Roland Barthes (1975) has portrayed as bliss or
jouissance— a pleasure so complete, engrossing, and enveloping that it has
the capacity to obliterate every last shred of self- awareness. In native hack
jargon, the state of bliss is the “Deep Hack Mode.” Matt Welsh, a well-
known hacker and computer scientist, humorously describes the utter mag-
netism of this mode, “very few phenomena can pull someone out of Deep
Hack Mode, with two noted exceptions: being struck by lightning, or worse,
your *computer* being struck by lightning.”10

Because hackers often submit their will and being to technology— and
are famous for denying their bodies sleep, at least for short periods— the
joy that hackers derive from attending to and carefully sculpting tech-
nologies are at times experienced as transcendent bliss. In these moments,
utility is exceeded. The self can at once express its most inner being and
collapse within the objects of its creation. In the aftermath of a particu-
larly pleasurable moment of hacking, there is no autonomous liberal self
to be found.

To be sure, these forms of pleasure and engagement were impossible for
me, the ethnographer, to touch and feel. But I routinely witnessed the so-
cial markers of the joy of hacking, as hackers talked shop with each other,
as they joked about technical minutiae, and especially during their festive
hacker celebrations. The key point is that the multifaceted pleasures of hack-
ing signal that utility is not the only driving force in hackers’ creative acts.
Although hackers are ! ercely pragmatic and utilitarian— technology after
all must work, and work exceptionally well— they are also ! ercely poetic
and repeatedly af! rm the artistic elements of their work. One of the clearest
expressions of technology/software as art is when source code is written as
poetry, or alternatively when poetry is written in source code (Black 2002).
For many free software hackers, the act of writing software and learning
from others far exceeds the simple enactment of an engineering ethic, or a
technocratic calculus for the sake of becoming a more pro! cient as well as
ef! cient programmer or system administrator.

This is hacking in its more romantic incarnation— a set of characteriza-
tions and impulses that hold an af! nity with liberalism, and yet also stray
into different, largely aesthetic and emotional territory. Liberalism, as a
body of thought, certainly allows for pleasure, but for the most part does
not theorize the subjective and aesthetic states of pleasure, which the Ro-
mantic tradition has centralized and made its own. Romanticism, explains

Amit Ray

Amit Ray

1 4 I N T RO D U C T I O N

Rosenblum (1987, 10), is a “lavish departure from sober individualism,” but
also “amounts to an exploitation of liberal ideals.” Although it is important
to differentiate liberal from romantic sensibilities, they nonetheless can co-
exist without much friction, as Rosenblum contends in her account on Ro-
manticism. She draws on various prominent historical ! gures, such as John
Stuart Mill and Henry David Thoreau, to examine the compatibilities and
symbiosis between liberalism and Romanticism. Hackers, borrowing from
free speech commitments and also committed to aesthetic experiences, are a
social group whose sensibilities lie at the interface between a more rational
liberal calculus and a more aesthetic, inward- looking one.

Hackers are not alone in embracing this aesthetic, expressive sensibility,
which philosopher Charles Taylor (1992) argues persuasively is a funda-
mental part of our contemporary imaginary, or what he calls the “expres-
sive self.” First visibly emerging in the eighteenth century, this sentiment
formed the basis for “a new fuller individualism,” and places tremendous
weight on originality, sentiments, creativity, and at times, even disengage-
ment. What must be noted is that expressive individualism and the moral
commitments it most closely entails— self- ful! llment, self- discovery, and
self- improvement— can be secured, as many critics have shown, through
consumption, self- help, human enhancement technologies, and body modi! -
cation (Bellah et al. 1985; Elliott 2003; Hogle 2005), and thus can converge
seamlessly with elements of possessive individualism. Today to liberate and
express the “authentic,” “expressive” self is usually synonymous with a life-
long engagement with consumption, ! ne tuned by a vast advertising ap-
paratus that helps sustain the desire for a seemingly limitless number of
consumer goods and, increasingly, human enhancement technologies such
as plastic surgery.

The example set by free software (and a host of similar craftlike prac-
tices), however, should make us at least skeptical of the extent to which
an ethic of consumption has colonized expressive individualism. Free soft-
ware hackers undoubtedly af! rm an expressive self rooted not in con-
sumption but rather in production in a double sense: they produce soft-
ware, and through this technical production, they also sustain informal
social relations and even have built institutions. Given the different ethical
implications entailed in these visions of ful! llment, expression, and self-
development (consumerist versus productive self), it behooves us to ana-
lytically pry them apart.

While the liberal articulations made by free software hackers, notably
those of free speech, carry a familiar political imprint, their material experi-
ences, the frustrations and pleasures of hacking, (including the particulari-
ties of making, breaking, and improving software) might seem politically
irrelevant. Yet the passionate commitment to hacking and especially the eth-
ics of access enshrined in free software licensing, express as well as celebrate
unalienated, autonomous labor, which also broadcasts a powerful political

Amit Ray

Amit Ray

Amit Ray

Amit Ray

A TA L E O F T WO WO R L D S 1 5

message. A number of theorists (Galloway 2004; Söderberg 2007; Wark
2004) have previously highlighted this phenomenon. Hackers insistence on
never losing access to the fruits of their labor— and indeed actively seeking
to share these fruits with others— calls into being Karl Marx’s famous cri-
tique of estranged labor: “The external character of labour for the worker
appears in the fact that it is not his own, but someone else’s, that it does
not belong to him, that in it he belongs, not to himself, but to another”
(Marx and Engels 1978, 74). It evokes Marx’s vision precisely because free
software developers seek to avoid the forms of estrangement that have long
been nearly synonymous with capitalist production. Freedom is thus not
only based on the right to speak free of barriers but also conceived as (al-
though primarily through practice) “the utopian promise of unalienated la-
bor, of human # ourishing through creative and self- actualizing production,”
as Barton Beebe (2010, 885) aptly describes it.

F/OSS hacker morality is therefore syncretic— a quality that is also pa-
tently evident in its politics. It enunciates a liberal politics of free speech and
liberty that speaks to an audience beyond hackers as well as a nonliberal
politics of cultural pleasure and political detachment, which is internally and
intensely focused on the practice of hacking only and entirely for its own
sake, although certainly inspiring others to follow in their footsteps. When
assessing the liberal ethics and affective pleasure of hacking, we should not
treat pleasure as the authentic face of hacking, and the other (liberalism) as
an ideological veneer simply in need of debunking (or in need of celebrat-
ing). From an ethnographic vantage point, it is important to recognize many
hackers are citizens of liberal democracies, and have drawn on the types of
accessible liberal tropes— notably free speech— as a means to conceptualize
their technical practice and secure novel political claims. And in the process,
they have built institutions and sustain norms through which they inter-
nalize these liberal ideals as meaningful, all the while clearly upholding a
marked commitment to unalienated labor.

ON RE P R E S E N T I N G HA C K E R ET H I C S

If I was comforted by the fact that hacking could be analyzed in light of cul-
tural issues like humor, liberalism, and pleasure, and that I had some meth-
odological tools at my disposal to do so, as I learned more about hacking,
my ease vanished as I confronted a new set of concerns. I increasingly grew
wary of how I would convey to others the dynamic vitality and diversity
that marks hackers and hacking, but also the points of contention among
them. To further illustrate this point, allow me to share a brief story.

Soon after ending my of! cial ! eldwork, I was having dinner in Chicago
with three local free software developers. One of them asked me about some
of my memorable ! eldwork experiences. There were many stories I could

Amit Ray

Amit Ray

1 6 I N T RO D U C T I O N

have chosen, but I started to tell the story of a speech by Kevin Mitnick— a
more transgressive hacker (for he had engaged in illegal behavior) than most
free software developers and one of the most infamous of all time— that I
heard during summer 2004 at Hackers on Planet Earth (HOPE)— a confer-
ence founded in 1994 to publicize his legal ordeals. Mitnick is known to
have once been a master “social engineer,” or one who distills the aesthet-
ics of illicit acts into the human art of the short cons. Instead of piercing
through a technological barricade, social engineers target humans, duping
them in their insatiable search for secret information. Because of various
legendary (and at times, illegal) computer break- ins, often facilitated by his
social engineering skills, Mitnick spent a good number of his adult years
either running from the law or behind bars, although he never pro! ted from
his hacks, nor destroyed any property (Coleman and Golub 2008; Mitnick
2011; Thomas 2003).

In July 2004, free at last and allowed to use computers again, Mitnick
attended HOPE in New York City for the ! rst time. He delivered his hu-
morous and enticing keynote address to an over# owing crowd of hackers,
who listened, enraptured, to the man who had commanded their political
attention for over a decade as part of a “Free Kevin Campaign.” He offered
tale after tale about his clever pranks of hacking from childhood on: “I
think I was born as a hacker because at ten I was fascinated with magic,” he
explained. “I wanted a bite of the forbidden fruit.” Even as a kid, his victims
were a diverse lot: his homeroom teacher, the phone company, and even the
Los Angeles Rapid Transit District. After he bought the same device used by
bus drivers for punching transfers, he adopted the persona of Robin Hood,
spending hours riding the entire bus network, punching his own pirated
transfers to give to customers. He found transfer stubs while dumpster div-
ing, another time- honored hacker practice for ! nding information that was
especially popular before the advent of paper shredding. Despite the way
that lawyers and journalists had used Mitnick’s case to give hackers a bad
name, Mitnick clearly still used the term with pride.

When I ! nished my story describing what I personally thought was a
pretty engrossing speech, one hacker, who obviously disapproved of my
reference to Mitnick as a “hacker,” replied, “Kevin is not a hacker. He is
a cracker.” In the mid- 1980s, some hackers created the term cracker to de-
ect the negative images of them that began appearing in the media at that
time. According to The Hacker Jargon File, crackers are those who hack
for devious, malicious, or illegal ends, while hackers are simply technology
enthusiasts. Although some hackers make the distinction between crackers
and hackers, others also question the division. To take one example, during
an interview, one free software hacker described this labeling as “a white-
washing of what kind of people are involved in hacking. [. . .] Very often
the same techniques that are used in hacking 2 [the more illegal kind] are an
important part of hacking 1.”

A TA L E O F T WO WO R L D S 1 7

To be sure, hackers can be grasped by their similarities. They tend to value
a set of liberal principles: freedom, privacy, and access. Hackers also tend
to adore computers— the glue that binds them together— and are trained
in specialized and esoteric technical arts, primarily programming, system,
or Net administration, security research, and hardware hacking. Some gain
unauthorized access to technologies, though the degree of illegality varies
greatly (and much of hacking is legal). Foremost, hacking, in its different
forms and dimensions, embodies an aesthetic where craft and craftiness
tightly converge. Hackers thus tend to value playfulness, pranking, and clev-
erness, and will frequently perform their wit through source code, humor, or
both: humorous code.

Hackers, however, evince considerable diversity and are notoriously
sectarian, constantly debating the meaning of the words hack, hacker, and
hacking. Yet almost all academic and journalistic work on hackers com-
monly whitewashes these differences, and de! nes all hackers as sharing a
singular “hacker ethic.” Offering the ! rst de! nition in Hackers: Heroes of
the Computer Revolution, journalist Steven Levy (1984, 39) discovered
among a couple of generations of MIT hackers a unique as well as “daring
symbiosis between man and machine,” where hackers placed the desire to
tinker, learn, and create technical beauty above all other goals. The hacker
ethic is shorthand for a list of tenets, and it includes a mix of aesthetic and
pragmatic imperatives: a commitment to information freedom, a mistrust of
authority, a heightened dedication to meritocracy, and the ! rm belief that
computers can be the basis for beauty and a better world (ibid., 39– 46).

In many respects, the fact that academics, journalists, and hackers alike
refer to the existence of this ethic is a testament not only to the superb ac-
count that Levy offers— it is still one of the ! nest works on hacking— but
also to the fact that the hacker ethic in the most general sense is an apt way
to describe some contemporary ethics and aesthetics of hacking. For exam-
ple, many of the principles motivating free software philosophy reinstanti-
ate, re! ne, extend, and clarify many of those original precepts. Further, and
rarely acknowledged, Levy’s account helped set into motion a heightened
form of re# exivity among hackers. Many hackers refer to their culture and
ethics. It is an instance of what Marshall Sahlins (2000, 197; see also Car-
neiro da Cunha 2009) describes as “contemporary culturalism”— a form of
“cultural self- awareness” that renders culture into an “objecti! ed value.”
This political dynamic of self- directed cultural representation is suggested
in the following quote by Seth Schoen, an avid free software advocate and
staff technologist at the Electronic Frontier Foundation. In the ! rst line of
text that appears on his Web page, Schoen announces, with pride: “I read
[Levy’s Hackers] as a teenager. [. . .] I was like, ‘God damn it, I should be
here!’ Then, about ten years later, I thought back about it: ‘You know, if
there was a fourth section in that book, maybe I would be in there!’ That’s
a nice thought.”11

1 8 I N T RO D U C T I O N

As I delved deeper into the cultural politics of hacking, though, I began to
see serious limitations in making any straightforward connections between
the hacker ethic of the past and the free software of the present (much less
other hacker practices). Most obviously, to do so is to overlook how ethi-
cal precepts take actual form and, more crucially, how they transform over
time. For example, in the early 1980s, “the precepts of this revolutionary
Hacker Ethic,” Levy (1984, 39; emphasis added) observes, “were not so
much debated and discussed as silently agreed upon. No Manifestos were
issued.” Yet (and somewhat ironically) a mere year after the publication of
his book, MIT programmer Richard Stallman charted the Free Software
Foundation (FSF) ([1996] 2010) and issued “The GNU Manifesto,” insist-
ing “that the golden rule requires that if I like a program I must share it with
other people who like it.”12 Today, hacker manifestos are commonplace. If
hackers did not discuss the intricacies of ethical questions when Levy ! rst
studied them, over the span of two decades they would come to argue about
ethics, and sometimes as heatedly as they argue over technology. And now
many hackers recognize ethical precepts as one important engine driving
their productive practices— a central theme to be explored in this book.

Additionally, and as the Mitnick example provided above illustrates so
well, the story of the hacker ethic works to elide the tensions that exist
among hackers as well as the different genealogies of hacking. Although
hacker ethical principles may have a common core— one might even say a
general ethos— ethnographic inquiry soon demonstrates that similar to any
cultural sphere, we can easily identify great variance, ambiguity, and even
serious points of contention.

Therefore, once we confront hacking in anthropological and historical
terms, some similarities melt into a sea of differences. Some of these dis-
tinctions are subtle, while others are profound enough to warrant what I,
along with Alex Golub, have elsewhere called genres of hacking (Coleman
and Golub 2008). F/OSS hackers, say, tend to uphold political structures of
transparency when collaborating. In contrast, the hacker underground, a
more subversive variant of hacking, is more opaque in its modes of social
organization (Thomas 2003). Indeed, these hackers have made secrecy and
spectacle into something of a high art form (Coleman 2012b). Some hackers
run vibrant technological collectives whose names— Riseup and May! rst—
unabashedly broadcast that their technical crusade is to make this world a
better one (Milberry 2009). Other hackers— for example, many “infosec”
(information security) hackers— are ! rst and foremost committed to secu-
rity, and tend to steer clear of de! ning their actions in such overtly po-
litical terms— even if hacking usually tends to creep into political territory.
Among those in the infosec community there are differences of opinion as
to whether one should release a security vulnerability (often called full dis-
closure) or just announce its existence without revealing details (referred to
as antidisclosure). A smaller, more extreme movement that goes by the name

A TA L E O F T WO WO R L D S 1 9

of antisec is vehemently against any disclosure, claiming, for instance, in one
manifesto that it is their “goal that, through mayhem and the destruction
of all exploitive and detrimental communities, companies, and individuals,
full- disclosure will be abandoned and the security industry will be forced to
reform.”13 There is also an important, though currently untold, story about
gaming and hacking, not only because hackers created some of the ! rst
computer games, notably Space Wars, written in 1962, but because of the
formal similarities between gaming and hacking as well (Dibbell 2006).

National and regional differences make their mark as well. For instance,
southern European hackers have followed a more leftist, anarchist tradi-
tion than their northern European counterparts. Chinese hackers are quite
nationalistic in their aims and aspirations (Henderson 2007), in contrast to
those in North America, Latin America, and Europe, whose antiauthoritar-
ian stance makes many— though certainly not all— wary of joining govern-
ment endeavors.

Finally, while the brilliance of Levy’s account lies in his ability to demon-
strate how ethical precepts fundamentally inhere in hacker technical prac-
tice, it is important to recognize that hacker ethics, past and present, are not
entirely of their own making. Just a quick gloss of the language many hack-
ers frequently invoke to describe themselves or formulate ethical claims—
freedom, free speech, privacy, the individual, and meritocracy— reveals that
many of them unmistakably express liberal visions and romantic sensibili-
ties: “We believe in freedom of speech, the right to explore and learn by
doing,” explains one hacker editorial, “and the tremendous power of the
individual.”14 Once we recognize the intimate connection between hacker
ethics and liberal commitments and the diversity of ethical positions, it is
clear that hackers provide less of a unitary and distinguishable ethical posi-
tion, and more of a mosaic of interconnected, but at times divergent, ethical
principles.

Given this diversity, to which I can only brie# y allude here, the hacker
ethic should not be treated as a singular code formulated by some homoge-
neous group called hackers but instead as a composite of distinct yet con-
nected moral genres. Along with a common set of moral referents, what
hacker genres undoubtedly share is a certain relation to legality. Hacker
actions or their artifacts are usually either in legally dubious waters or at the
cusp of new legal meaning. Hence, they make visible emerging or conten-
tious dilemmas.

Although hackers certainly share a set of technical and ethical commit-
ments, and are in fact tied together by virtue of their heated debates over
their differences, given the existence of the diversity just noted, my claims
and arguments should not be taken as representative of all hacking, even
though for the sake of simplicity (and stylistic purposes), in the chapters
that follow I will often just refer to hackers and hacking. My discussion
is more modest and narrow for it will stick primarily to the example of

2 0 I N T RO D U C T I O N

free software.15 My preference for announcing the “self- conscious, serious
partiality” (Clifford 1986, 7) of this account comes from witnessing mo-
tivations, ethical perceptions, desires, and practices far more plastic, # ex-
ible, sublime, contradictory, and especially ! ery and feverish than usually
accounted for in academic theories. The world of hacking, as is the case
with many cultural worlds, is one of reckless blossoming, or in the words of
Rilke: “Everything is blooming most recklessly; if it were voices instead of
colors, there would be an unbelievable shrieking into the heart of the night.”

OM I S S I O N S A N D CH A P T E R OV E RV I E W

Some readers may be asking why I have not addressed Silicon Valley entre-
preneurship and Web 2.0, both of which might further illuminate the ethics
and politics of F/OSS.16 For those interested in Web 2.0— a term that is ban-
died around to refer to nearly all contemporary digital tools and the social
practices that cluster around these technologies— you might want to jump
to the short epilogue, where I critique this term. It is a moniker that obscures
far more than it reveals, for it includes such a wide range of disparate phe-
nomena, from corporate platforms like Flickr, to free software projects, to
dozens of other digital phenomena. In fact, by exploring in detail free soft-
ware’s sociocultural dynamics, I hope this book will make it more dif! cult
to group free software in with other digital formations such as YouTube, as
the media, pundits, and some academics regularly do under the banner of
Web 2.0.

The relationship between Silicon Valley and open source is substantial as
well as complicated. Without a doubt, when it comes to computers, hackers,
and F/OSS, this high- tech region matters, as I quickly came to learn within
weeks of my arrival there. For the last thirty years, hackers have # ocked to
the Bay Area from around the world to make it one of their most cherished
homelands, although it certainly is not the only region where hackers have
settled and set deep roots. At the turn of this century, open source also be-
came the object of Silicon Valley entrepreneurial energy, funding, and hype,
even though today the fever for open source has diminished signi! cantly,
redirected toward other social media platforms.

The book is thus not primarily about free software in Silicon Valley. In
many respects my material tilts toward the North American and European
region but, nevertheless, I have chosen to treat free software in more gen-
eral than regional registers as well, so as to capture the reality of the legal
transnational processes under investigation along with the experience of
the thousands and thousands of developers across the world. Debian, for
example, has developers from Japan, Australia, Canada, New Zealand, all
over western and eastern Europe, Brazil, Venezuela, Argentina, and Mexico.17
I decided on this approach as it is important to demonstrate different values

A TA L E O F T WO WO R L D S 2 1

and dynamics at play than those found in Silicon Valley, which are too often
mistaken to represent the commitments of all engineers, computer scientists,
and hackers.18

Coding Freedom is composed of six chapters, divided conceptually into
pairs of two. The ! rst two chapters are historically informed, providing the
reader with a more general view of free software. Chapter 1 (“The Life of
a Free Software Hacker”) provides what is a fairly typical life history of a
F/OSS hacker from early childhood to the moment of discovering the “gems”
of free software: source code. Compiled from over seventy life histories, I
demonstrate how hackers interact and collaborate through virtual technolo-
gies, how they formulate liberal discourses through virtual interactions, how
they came to learn about free software, and how they individually and col-
lectively experience the pleasures of hacking. I also offer an extended discus-
sion of the hacker conference, which I argue is the ritual (and pleasurable)
underside of discursive publics. Chapter 2 (“A Tale of Two Legal Regimes”)
presents what were initially two semi- independent legal regimes that over
the last decade have become intertwined. The ! rst story pertains to free
software’s maturity into a global movement, and the second turns to the glo-
balization and so- called harmonization of intellectual property provisions
administered through global institutional bodies like the World Trade Orga-
nization. By showing how these trajectories interwove, I emphasize various
unexpected and ironic outcomes as I start to elaborate a single development
that will continue to receive considerable treatment later in the book: the
cultivation, among hackers, of a well- developed legal consciousness.

The next two chapters provide a close ethnographic analysis of free soft-
ware production. Chapter 3 (“The Craft and Craftiness of Hacking”) pres-
ents the central motif of value held by hackers by examining the practices
of programming, joking, and norms of socialization through which they
produce software and their hacker selves. Partly by way of humor, I tackle
a series of social tensions that mark hacker interactions: individualism and
collectivism, populism and elitism, hierarchy and equality as well as artistry
and utility. These tensions are re# ected but also partially attenuated through
the expression of wit, especially jokes, and even funny code, whereby jokes
(“easter eggs”) are included in source code. Chapter 4 (“Two Ethical Mo-
ments in Debian”) addresses ethical cultivation as it unfolds in the largest
free software project in the world— Debian. This project is composed of over
one thousand developers who produce a distribution of the Linux operating
system (OS). I present and theorize on the tensions between Debian’s gover-
nance, which blends democratic majoritarian rule, a guildlike meritocracy,
and ad hoc deliberations. In comparing these three modes of governance, I
unearth various ethical processes— informal, formal, pedagogical, and dra-
matic— by which Debian developers inhabit a liberally based philosophy
of free software, and use it as an opportunity to revisit the tension between
liberal individualism and corporate sociality explored earlier.

2 2 I N T RO D U C T I O N

The ! nal two chapters engage with more overtly political questions,
examining two different and contrasting political elements of free soft-
ware. Chapter 5 (“Code Is Speech”) addresses two different types of legal
pedagogy common among free software developers. First, in the context
of Debian, I look at everyday legal learning, where debating and learning
about the law is an integral part of project life. I then compare this with
a series of dramatic arrests, lawsuits, and political protests that unfolded
between 1999– 2004 in the United States, Europe, and Russia, and on the
Internet, and that allowed for a more explicit set of connections to be drawn
between code and speech. These demonstrations were launched against
what was, at the time, a relatively new copyright statute, the DMCA, and
the arrest of two programmers. These multiyear protests worked, I argue,
to stabilize a relatively nascent cultural claim— nearly nonexistent before
the early 1990s— that source code should be protected speech under the
First Amendment (or among non- American developers, protected under free
speech laws). In contrast to the political avowal of the DMCA protests, my
conclusion (“The Politics of Disavowal and the Cultural Critique of Intel-
lectual Property Law”) discusses how and why hackers disavow engage-
ment in broad- based politics, and instead formulate a narrow politics of
software freedom. Because a commitment to the F/OSS principles is what
primarily binds hackers together, and because many developers so actively
disavow political associations that go beyond software freedom, I contend
that the technoscienti! c project of F/OSS has been able to escape the various
ideological polarizations (such as liberal versus conservative) so common in
our current political climate. F/OSS has thus been taken up by a wide array
of differently positioned actors and been placed in a position of signi! cant
social legibility whereby it can publicly perform its critique of intellectual
property law.

Finally, to end this introduction, it is worth noting that this book is not
only an ethnography but also already an archive of sorts. All cultural for-
mations and ethical commitments are, of course, in motion, undergoing
transformation, and yet many technological worlds, such as free software,
undergo relentless change. What is written in the forthcoming pages will
provide a discrete snapshot of F/OSS largely between 1998 and 2005. Much
of this book will still ring true at the time of its publication, while other ele-
ments have come and gone, surely to have left a trace or set of in# uences,
but no longer in full force. And despite my inability to provide a warranty
for this archival ethnography, I hope such an account will be useful in some
way.

C H A P T E R 3

The Craft and Craftiness of Hacking

••

I have nothing to declare but my genius.
— Oscar Wilde

I, for the " rst time, gave its proper place among the prime necessi-
ties of human well- being, to the internal culture of the individual.

— John Stuart Mill, Autobiography

Hackers value cleverness, ingenuity, and wit. These attributes arise not
only when joking among friends or when hackers give talks but also

during the process of making technology and writing smart pieces of code.
Take, for example, this short snippet of what many hackers would consider
exceptionally clever code written in the computer language Perl:

#count the number of stars in the sky
$cnt = $sky =~ tr/*/*/;

This line of Perl is a hacker homage to cleverness; it is a double enten-
dre of semantic ingenuity and technical wittiness. To fully appreciate the
semantic playfulness presented here, we must look at the " ner points of a
particular set of the developer population, the Perl hacker. Perl is a computer
language in which terse but technically powerful expressions can be formed
(in comparison to other programming languages). Many Perl coders take
pride in condensing long segments of code into short and sometimes inten-
tionally confusing (what coders often call “obfuscated”) one- liners (Mon-
fort 2008). If this above line of code were to be “expanded” into something
more traditional and accessible to Perl novices, it might read something like:

$cnt = 0;
$i = 0;
$skylen = length($sky)
while ($i < $skylen) {

9 4 C H A P T E R 3

$sky = substr($sky,0, $i) . ‘*’ . substr($sky, $i+1,
length($skylen));
$i++;

}
$cnt = length($sky);

We see that the Perl programmer has taken six lines of code and reduced
them to a single line by taking advantage of certain side effects found in the
constructs of the Perl language, and the very act of exploiting these side ef-
fects is a great example of a hack. With this transformation of “prose” into
terse “poetry,” the developer displays a mastery of the technical aspect of
the language. This mastery is topped on the semantic level by a quip. The
programmer has named the variable $sky, and the star is the asterisk (*)
character.1 The counting function in this program counts any appearance
of the asterisk symbol— hence, “counting the number of stars in the sky.”
This code has a technical function, but within a community of peers, its
performance is also a declaration and demonstration of the author’s savvy.

Hackers will publicly acknowledge such acts of “genius” and are thus
" ercely meritocratic— in ideology and practice. Yet given that so much of
hacker production is collective, a fact increasingly acknowledged and even
celebrated in the ethical philosophy of F/OSS, a commitment to individual-
ity, meritocracy, and independence is potentially subverted by the reality
of as well as desire to recognize their fundamental interdependence. The
belief in the value of individuality coupled with the constant need for the
help of other hackers points to a subtle paradox that textures their social
world. The tension between individualism and collectivism, in particular,
is negotiated through the extremely well- developed and common penchant
that hackers have for performing cleverness, whether through technological
production or humor. Hackers do not treat all forms of expression, technol-
ogy, and production as original and worthy expressions of selfhood. Instead,
one must constantly manifest, in the face of one’s peers, a discriminating and
inventive mind by performing its existence through exceptionally ingenious
and clever acts. By contributing a shining, awe- inspiring sliver of their cre-
ative self in a domain otherwise characterized by a common stock of knowl-
edge and techniques, hacker utilize humor or clever code to perform their
craftiness, and thus momentarily differentiate themselves from the greater
collective of hackers.

While this chapter describes the ethnographic expression of humor and
cleverness among hackers (which might be valuable and interesting in its
own right), it does so at the service of other, analytic goals. Examining
humor and cleverness will allow me to more richly demonstrate how ten-
sions (say, between individualism and collectivism) arise through the course
of technological practice, and how hackers partially resolve them. Taking
a close look at these frictions takes us a long way toward understanding

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 9 5

the social context under which these hackers labor and why free speech
ideals— in contrast to those of intellectual property instruments— resonate
with their experiences. The friction between individualism and collectivism
(and its articulation in meritocratic discussions) helps, for one, underwrite
a dynamic social environment in which hackers labor. Second, this tension
speaks directly to issues of authorship, selfhood, creativity, and intellectual
property in a way that extends, contrasts, and critiques the dominant intel-
lectual property regime.

The analysis opens by examining the pragmatics and aesthetics of hack-
ing, by which I mean the constraints and properties of their technological
activities, and contrasting the writings of two hackers, Espe and Da Mys-
tik Homeboy (DMH). Understanding the pragmatics of hacking is nec-
essary to grasp the contradictions/tensions that mark hacking along with
what I call the poetics of hacking: the extreme value hackers place on in-
genuity, craftiness, and cleverness. I will explore these largely through the
angle of humor. The " nal section revisits the tension between individual-
ism and collectivism. Hackers assert a form of individualism that valorizes
self- expression and development among peers engaged in similar acts of
technological production, while tightly entangled with each other through
constant collaboration.

HA C K E R PR A G M AT I C S

Python: Reaching a Transcendental Space
I remember when I found python, back in the 1.52 days [1.52 refers
to a version number].2 I was an unemployed slacker living in a student
co- op. I’d sit in a (since disappeared) cafe in Berkeley and write reams
of more or less useless code, simply for the joy of it. I’d reach some sort
of transcendental state fueled by relevant whitespace, clear syntax, and
pints of awfully strong, black coffee. In those days I " rst felt the pure
abstract joy of programming in a powerful way— the ability to conjure
these giant structures, manipulate them at will, have them contain and
be contained by one another. I think I learned more in those couple of
months, thanks to Google and a free ricochet connection, than in my
previous years in CS [computer science].

Eventually, however, it became clear I had to get a real job. Flaky
freelance contracts which never paid sucked so hard. So, I hemmed and
hawed and was con2 icted and " nally got a job, and it involved perl. It
was, perhaps, a worst- case perl scenario. A very rapidly growing web-
site, a few developers with vastly different styles, a lack of real commu-
nication, and a pronounced lack of appreciation for namespaces. From
my high tower of control and purity, I’d been thrown into a bubbling
pool of vaguery and confusion. Cryptic variables would pop out of

9 6 C H A P T E R 3

the aether, make an appearance in a 2000 line CGI [Common Gate-
way Interface], and never be heard from again. Combating naming
schemes would meet where different spheres of developer in2 uence
overlapped— $postingTitle and $PostingTitle doing battle in the same
subroutine. Scripts almost— but not quite— deprecated. The situation
is quite a bit more under control now, 3 years later.

 — Espe

Perl: Hacking in the Big Ball of Mud
Perl has been derided by many people as an ugly, dif" cult to learn
language that enforces bad habits. I generally do not advocate perl to
people who are attempting to learn programming, or even mention
it’s existence. However, perl, for better or worse, is a culmination
of decades of culture. Perl is a Unix Gematria— an arcane relation
of symbols evolved in a manner similar to Jewish Qabbalistic nu-
merology. Many other languages, such as python or Java, attempt
to enforce a strict framework and rule set of contracts, interfaces,
strong typing, and private methods to delineate functionality. While
much of this stems from noble traditions of SmallTalk and ML [they
are computer languages], much of it also fails to realize the point
of these ancestral languages: categorization (such as through strict
typing and object models) is itself a form of computation. When this
fact is not respected, you wind up with a bastardized language that
is [. . .] Anal.

Perl was designed by a linguist, and realizes that people have dif-
ferent things to say in different contexts, and your language is de" ned
by the environment and not vice versa. As Paul Graham said, both
the world and programming is a “Big Ball of Mud,” which perl has
evolved around. The implicit variables, the open object model, the
terse expressions all contribute to hacking on the Big Ball of Mud.

Finally, there is a very pragmatic reason to like perl: It will save
your ass. Those who are 2 uent enough in the culture to realize that
“this problem has been solved before,” will be able to invoke forces
through perl. Again, similar to the numerologists, with a few arcane
symbols that are undecipherable to the outside world, great acts of
magik can be accomplished.

 — Da Mystik Homeboy

Espe is a San Francisco hacker who is clearly fond of Python, an open-
source computer language. Originally created by a Dutch programmer as
a teaching language, Python is now a thriving open- source project. The
language’s distinguishing feature (both aesthetic and technical) is its strict
technical parameters that require bold syntactic clarity. For example,

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 9 7

Python is unusual among programming languages in that the amount of
space used to indent a line of code actually affects the code’s meaning. On
his blog (excerpted above), Espe explains how he was able to hack to his
heart’s delight for no other reason than to experience “the joy of program-
ming.” His stance toward Python is reverent, rooted in deep pleasure. He
obviously adores both the formal structure— Python— and the substance—
coffee— that have enabled him to hack for his own enjoyment and self-
development. In this instance, Espe constructs programming as a pleasing,
unencumbered exercise of ample creativity. He seeks in hacking to reach
the elusive quality of perfection.

By the next paragraph, however, his register shifts to one of dismayed ir-
reverence toward another programming language, Perl, considered by many
to be the antithesis of Python, and therefore a source of antipathy for many
Python fanatics. Eventually forced to hack for money (a problem itself for
this programmer), he was handed “a worst- case scenario.” Poorly coded
Perl transformed programming from an activity of boundless satisfaction
into a nightmarish ordeal. Espe describes this unfavorable turn of events
as being plucked from his “high tower of control and purity,” only to be
“thrown into a bubbling pool of vaguery and confusion.” In having to read
and parse other people’s codes, programmers routinely encounter what has
been depicted aptly as a “twisting maze of corridors, a bottomless pit” (Ull-
man 2003, 262).

In the second extract, we have DMH, also a San Francisco hacker, but
unlike Espe, a self- styled Perl alchemist. Perl’s creator, a linguist and pro-
grammer named Larry Wall, intended the code to embody the 2 exible and
often- irrational properties of a natural language. As noted by DMH, Perl’s
aesthetic and technical features are opaqueness, complexity, and 2 exibility.
Also run as an open- source project, Perl is incorporated into the identity of
many of its supporters, who call themselves Perl Monks, underscoring the
single- minded dedication they have for what is considered a language that
can produce poetic (or highly unreadable code) that is creatively displayed
during obfuscated code contests, which are usually held for Perl, C, and C++.3

While DMH respects Perl for what it is most famous for— its cryptic
nature and poetic elegance— he is drawn to Perl for pragmatic reasons. Its
“implicit variables, the open object model, the terse expressions,” DMH
says, allow him to hack on the “Big Ball of Mud”— that is, the world of
thick, unmanageable problems and constraints. For DMH, Perl’s appeal lies
in its extensive common stock of shared solutions and architectural 2 ex-
ibility, which he contrasts to Python, a language so “anal” it is unable to
accomplish “great acts of magik.” By this he means what is known among
Perl geeks as the Perl’s motto: “TIMTOWTDI” (There’s more than one way
to do it).

Digital computers allow for the creation and use of mini- machines (aka
software) written by programmers using any number of computer languages.

9 8 C H A P T E R 3

Instead of having to build a piece of hardware for every type of desired func-
tion (like a calculator, music recorder, or word processor), the computer is
a general- purpose machine that once animated by software programs, can
potentially behave as all those functional objects. Espe captures the expan-
sive technical capability of software when he de" nes coding as “the ability
to conjure these giant structures, manipulate them at will, have them con-
tain and be contained by one another.” This is computing in its dimension
of unfettered freedom.

If at one level hackers adroitly exploit the expansive technical capabilities
of the computer, they are also signi" cantly limited by a powerful force " eld
of constraint— the Big Ball of Mud that DMH refers to in his tract on Perl.
Constraints are constant and of a nearly in" nite variety, such as hardware
speci" cations and failures, computer language syntax, “clueless” managers,
inherited “crufty” or vague code, spam, incompatible " le formats, “dumb”
patent laws, misguided customers, technical speci" cations, and manager-
dictated deadlines. Problems are so central to software that some have even
portrayed “glitches” as the “manifestation of genuine software aesthetic”
(Goriunova and Shulgin 2008, 111).

Programming thus entails an expansive form of exploration and pro-
duction that unfolds into a labyrinthine landscape of intricate barriers and
problems. Julian Dibbell (2006, 104; see also Ensmenger 2010, 3) depicts
the nature of computing, quite poetically, as an “endlessly repeatable col-
lusion of freedom and determinism— the warp and woof of " xed rules and
free play, of running code and variable input.” Because of constraints and
the complexity of coding, to hack up solutions effectively, as Michael Fischer
(1999, 261) notes, requires “a constant need for translation, interfacing,
sharing, and updating.”

As part of this practical capacity, the very nature of hacking— turning
a system against itself— is the process of using existing code, comments,
and technology for more than what their original authors intended. This is
the paradox of constraint. Since many technical objects are simultaneously
bound by certain limits yet exhibit potential excesses (Star and Griesemer
1998), during the course of their existence, they can be exploited and redi-
rected toward new paths of functionality by acts of hacking. Hackers are
thus attuned not simply to the workings of technology but also seek such
an intimate understanding of technology’s capabilities and constraints that
they are positioned to redirect it to some new, largely unforeseen plane.
They collectively and individually derive pleasure in outwitting constraint.
In essence, while hacking follows a craftlike practice, it is predicated on a
stance of craftiness to move the craft forward. Hacking is where craft and
craftiness converge.

Programming and similar technical activities require extremely rigorous
logical skills, an unwavering sensitivity to detail (a single wrong character
can render a program useless), and such an intimate command of a system
that one can, if need be, exceed the conventional or intended constraints of

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 9 9

the system. It requires, in the words of programmer Ellen Ullman (2003,
177), a “relentless formalism.” Given the accelerated pace of technologi-
cal change, hackers also have to perpetually learn new technologies as old
ones are phased out due to obsolescence, in order to remain competitive in
a marketplace.

Out of this routine form of technical activity hackers have constituted
an expansive pragmatic practice of instrumental yet playful experimenta-
tion and production. In these activities the lines between play, exploration,
pedagogy, and work are rarely rigidly drawn. Sometimes hackers will be
motivated by a work- oriented goal, as is/was the case with DMH. At other
times, they are motivated to hack for the sheer pleasure of doing so, as
Espe emphasized. In either case, frustration and pleasure are fundamental
to hacking.

A lifetime of creative and pleasurable technical production that often
depends on computers also blurs the line between selves and objects. As fa-
mously phrased by Sherry Turkle (1984), computers are a hacker’s “second
self.” The hacker relationship to computers and software, though, rarely
exists in a steady state in which the self unproblematically melds with this
object to catapult hackers into a posthuman, postmodern state of being.
The hacker relationship with the computer is a far more " nicky, prickly, and
interesting affair in which computers themselves constantly misbehave and
break down (as do the hackers, at times, when they burn out from such an
intense and demanding craft). Hackers sometimes confront their computers
as an unproblematic and beloved “object,” and at other times view them as
an independent and recalcitrant “thing”— a differentiation posed by Hei-
degger ([1927] 2008) in his famous exploration of things and objects.

In Heidegger’s cartography, an object strikes its users as familiar and be-
yond the scope of critical awareness. Its social meaning is held in place
through regular patterns of use and circulation. But when we misuse an ob-
ject (a spoon used as a knife or a can opener utilized as a hammer) or when
an object malfunctions, its thingness is laid bare in the sense that its material
characteristic becomes evident. As noted by scholar of things and stuff Bill
Brown (2001, 4), “the story of objects asserting themselves as things is the
story of how the thing really names less an object than a particular subject-
object relation.”

In order to appreciate the hacker relationship to computers, this subtle
differentiation between an object and a thing is crucial. Hacker technical
practices never enact a singular subject- object relation, but instead one that
shifts depending on the context and activity. There are times when hack-
ers work with computers, and in other cases they work on them. Much
of hacker technical practice can be described as an attempt to contain the
thingness of computers that arises through constant problems and con-
straints by transforming it back into a paci" ed, peaceful object that then
becomes an ideal vehicle for technical production as well as creative expres-
sion. At times, their labor is characterized by grinding effort, and in other

1 0 0 C H A P T E R 3

instances, it involves far more pleasurable streams of seemingly friction- free
work. The “Python versus Perl Wars” above articulates the metapragmatic
understandings of hacker labor that makes it possible to enter into this rela-
tional oscillation in the " rst place.

HA C K E R CL E V E R N E S S

Humor can be dissected, as a frog can, but the thing dies
in the process and the innards are discouraging to any but

the pure scienti" c mind.
— E. B. White, A Subtreasury of American Humor

As the examples provided by Espe and DMH display, hacker technical prac-
tice is rooted in a playful, analytic, and especially re2 ective stance toward
form that switches between reverence and irreverence depending on individ-
ual preferences as well as the context of activity. Hackers routinely engage
in a lively oscillation of respect and disrespect for form, often expressed in
arguments over the technical idiosyncrasies, strengths, and weaknesses of a
programming language, OS, or text editor. These disagreements are the sub-
ject of a range of humorously formulated “holy wars,” such as Perl versus
Python (which we just got a glimpse of), vi versus Emacs (text editors), and
Berkeley Software Distribution versus Linux (different Unix- based OS). De-
spite this, hackers otherwise share an ideal about how labor and production
should proceed: with remarkable craftiness and wit.

One important vehicle for expressing wit is humor. As Mary Douglas
(1975, 96) famously theorized, joking brings together “disparate elements
in such a way that one accepted pattern is challenged by the appearance
of another,” and can be generally de" ned as “play upon form.” Before
expanding on the role of humor among hackers, it is key to highlight that
hackers are able to joke with such facility because of the habituated dis-
positions (Bourdieu 1977) of thought along with tacit knowledge (Polanyi
1966) acquired through a lifelong and routine practice of logic- oriented
problem solving. Hackers liberally enjoy hacking almost anything, and
because their cultivated technical practice requires an awareness and rear-
rangement of form, they are able to easily transfer embodied mental dis-
positions into other arenas. To put it bluntly, because hackers have spent
years, possibly decades, working to outsmart various technical constraints,
they are also good at joking. Humor requires a similarly irreverent, fre-
quently ironic stance toward language, social conventions, and stereotypes
(Douglas 1975).

The mastery and craft of hacking, however, do not fully account for
the craftiness of hackers.4 Many of the engineering arts and sciences are
guided by similar aesthetic- solving sensibilities, mandates, and preoccupa-
tions (Galison 1997; see also Jones and Galison 1998). Engineers and other

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 1

craftspeople, such as repairpersons, also deploy similar problem- solving
skills rooted in tinkering: they must engage with the limits, possibilities, and
constraints of various material objects, and " ddle around to " nd a nonobvi-
ous solution (Orr 1996; Sennett 2008).

Hacker aesthetics share these above- mentioned dispositions, but differ
in that hackers see ingenuity and cleverness, often expressed though hu-
mor, as far more than a means to regiment and guide technological innova-
tion.5 Among hackers, humor has a substantial life of its own. Hackers value
craftiness and cleverness for their own sake. Whereas academic scientists
tend to value referential cleverness as it concerns their work, hackers value
cleverness as self- productive, and thus make it appropriate to nearly any
context (mathematicians, though, are well known for their proli" c humor
that exceeds their discipline). Hackers idealize cleverness as a characteristic
par excellence that transforms what they spend all of their time doing—
creating technology and " xing problems in a great maelstrom of complexity
and confusion— into an activity of shared and especially sensual pleasure.

Before extending my theoretical discussion on cleverness and humor, per-
mit me to provide a few examples that are embedded in technical artifacts
and one that arose during social interaction. Since much of hacker wit is so
technically coded, it is dif" cult to translate it in any meaningful manner to a
lay audience, and I am afraid it might not strike nongeek readers as all that
humorous. Analyzing humor, after the fact, is also nearly never humorous,
but hopefully it can still be analytically illuminating. I have chosen four
examples that are more accessible to a nontechnical audience and supply at
least a taste of the types of jokes common among hackers.

Peppering technical artifacts with clever quips occurs quite commonly in
hacker technical naming conventions or documentation. For instance, most
software applications also come with some sort of description of their pur-
pose and functionality. Jaime Zawinski, the author of a software application
called BBDB, portrays his creation via a smattering of jokes (most software
applications include a description of their functionality):

BBDB is a rolodex- like database program for GNU Emacs. BBDB stands for
Insidious Big Brother Database, and is not, repeat, not an obscure refer-
ence to the Buck Rogers TV series.
It provides the following features:
Integration with mail and news readers, with little or no interaction by the
user:
easy (or automatic) display of the record corresponding to the sender of the
current message; automatic creation of records based on the contents of the
current message; [. . .]

While the “Insidious Big Brother Database” is an obvious and playful recog-
nition of the common hacker mistrust of governmental authority, the Rog-
er’s reference is more esoteric and thus only a small fraction of hackers will

1 0 2 C H A P T E R 3

be able to decipher it: those hackers who have watched the television series.
With the cue offered in the documentation, those hackers will immediately
catch the author’s irony (that this is a reference to the show) and recognize
that BBDB refers to the series’ pint- size robot Twiki, whose preferred mode
of communicating is a noise that sounds remarkably like “B- D- BBBB- D.”

I am particularly fond of the next example contained in the manual (usu-
ally shortened to “man page”) for Mutt, a popular email client among geeks.
Man pages provide documentation and are included with almost all Unix
systems. They typically follow a strict standard for conveying information
about the program by designating a set of common categories under which
programmers provide detailed information about the software, such as the
name, synopsis, description, options, " les, examples, and authors. One im-
portant category is bugs, where authors list the problems and glitches with
the software. (Software can have a number of bugs and glitches yet still
work. The bug category gives you a sense of what these glitches are and
when they will emerge.) The Mutt man page exploits the fact that the word
mutt can mean a mongrel dog. Notice the category of bugs:

NAME
mutt— The Mutt Mail User Agent

SYNOPSIS
mutt [- nRyzZ] [- e cmd] [- F ! le] [- m type] [- f ! le] [. . .]

DESCRIPTION
Mutt is a small but very powerful text based program for read-
ing electronic mail under Unix operating systems, including
support color terminals, MIME, and a threaded sorting mode.

OPTIONS
— A alias

An expanded version of the given alias is passed to stdout.
— a ! le

Attach a ! le to your message using MIME. [. . .]

BUGS
None. Mutts have # eas, not bugs.

FLEAS
Suspend/resume while editing a ! le with an external editor
does not work under SunOS 4.x if you use the curses lib in /
usr/5lib. It does work with the S- Lang library, however.
Resizing the screen while using an external pager causes
Mutt to go haywire on some systems. [. . .]

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 3

My last example of this subtle integration of wit in a technological arti-
fact comes in the form of a warning message. Many software programs and
related artifacts are accompanied by dramatic warnings that appear during
con" guration. These are intended to alert the user that its integration into
some software systems may produce unanticipated, drastic, and completely
undesirable results (like breaking multiple parts of your software system
that took " ve weeks to get “just right”). Often this happens because a piece
of software is still experimental and riddled with bugs. The following help
message is available in the 2.6 branch of Linux kernel con" guration and
refers to the RAID- 6 device driver, which at the time was still under develop-
ment and hence buggy:

WARNING: RAID- 6 is currently highly experimental. If you use it, there is no
guarantee whatsoever that it won’t destroy your data, eat your disk drives,
insult your mother, or re- appoint George W. Bush

These three examples demonstrate that hackers value subtlety and irony
of presentation. Hackers discretely embed nuanced, clever and frequently
nonfunctional jokes within what are otherwise completely rational, con-
ventional statements of function. Yet hackers never use jokes to undermine
the functionality or trustworthiness of the code or documentation. These
technical artifacts are judged seriously by geeks. The presence of wit only
works to add to the value of the rational content by reminding the user
that behind these highly systematized genres, there is a discriminating and
creative individual.

Other instances of hacker wit occur in person and are less subtle. For ex-
ample, at a security conference in 2001, Peiter Zatko, aka “Mudge,” a com-
puter security researcher, professional, and hacker (once part of the famous
hacker association L0pht Heavy Industries), arrived in a terrycloth bathrobe
to present on a panel on PDAs. This bold sartorial statement distinguished
him from his nonhacker colleagues, also security researchers, but scientists.
It prioritized hacker over scienti" c identity. Mudge’s attire, however, per-
formed a problematic public- private breach in the context of his talk, which
focused on the changing use patterns of PDAs. “PDAs were designed for per-
sonal use, but are now being used more for business,” Zatko said. “There’s
a security boundary that’s being crossed.”6 Zatko’s robe embodied his argu-
ment that the shift amounted to a breached security boundary: PDAs should
not be used for sensitive, private data.

Though humor is found worldwide, instances like the ones just described
are fruitful to the anthropologist because of their cultural particularity. As
this playful practice usually induces laughter— a state of bodily affect that
enraptures an audience— humor can potentially produce forms of collective
awareness and shared sociality. Given these two properties, we can de" ne
humor, in the most general terms, as a play with form whose social force lies

1 0 4 C H A P T E R 3

in its ability to accentuate the performer, and which at times can work to
delineate in- group membership.

Apart from this, the meaning of humor is otherwise quite culturally spe-
ci" c. The power to enrapture and entangle people can lead to entirely con-
trary social effects. In certain cases and types of groups, joking can establish
and maintain hierarchies as well as social boundaries by, say, delineating so-
cial roles (Gusterson 1998; Mulkay 1988; Radcliffe- Brown 1952). In other
cultural and historical contexts, humor pushes the envelope of conceptual
boundaries in ways that may be 2 eeting and frivolous (Douglas 1975), or
politically subversive (Bakhtin 1984; Critchley 2002). In other words, be-
cause the effect, purpose, and even form of humor are deeply context de-
pendent, culturally in2 ected, and historically moored, it is a useful tool for
analyzing broader forms of cultural meaning.

Among hackers, humor is a distilled and parsimonious instantiation of
the adoration of cleverness. It is an especially effective way of enacting hack-
ers’ commitment to wittiness precisely because, unlike the objects of hacker
technical production, joking has no strict functional utility, and speaks to
the inherent appeal of creativity and cleverness for their own sake. Joking
is a self- referential exercise that designates the joker as an intelligent person
and cleverness as autonomously valuable.

It bears repetition that hackers draw on their pragmatic ability to ma-
nipulate form to engage in this type of joking. These two elements— being
good at hacking and valuing cleverness for its own sake— exist in a tight
and productive symbiosis, a mutually reinforcing relation that produces an
abundance of humor among hackers. There is a close kinship between hack-
ing and humor.

Insofar as humor is tethered to the moment of its utterance, it exudes
an auric quality of spontaneous originality (Benjamin [1936] 2005), which
among hackers authenticates the self as a distinctive and autonomous indi-
vidual. Humor is one of the starkest expressions of the hacker “ideal self.”
By telling jokes, hackers externalize what they see as their intelligence and
gain recognition from technically talented peers.

Like hacker technological production, humor also works to implicitly
con" rm the relational self who is joined to others by a shared domain of
practice, and a common stock of implicit cultural and explicit technical
knowledge. Recall that many jokes, such as technical Easter eggs, are re-
ceived as pleasurable gifts. They not only break the monotony and grind
of sitting at the computer, usually for hours a day as one churns out code
or resolves problems, but also remind hackers of their shared experiences.
“One might say that the simple telling of a joke,” writes philosopher Simon
Critchley (2002, 18), “recalls us to what is shared in our everyday practices.
[. . .] So, humor reveals the depth of what we share.” If humor creates " ne
distinctions, it also levels the ground, because in the very moments of laugh-
ter, hackers implicitly recognize and celebrate the shared world of meaning
in which they work. After all, like many instances of joking, much of hacker

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 5

humor is so culturally coded (which here means technically in2 ected) that
the only people who can routinely receive, and as such appreciate, their wit
are other hackers. One must rely on the acknowledgment and judgment of
those who can appreciate the performance of wit, because they share at least
some of one’s implicit values, explicit technical knowledge, and standards
of creative evaluation.

To the extent that everyone enjoys laughter, humor functions much as a
communal gift— the performance of which beckons others to follow suit. In-
deed, once one hacker starts joking, many others will dive in. It also breaks
the monotony and eases the strains of hacking, and so can also be seen as
a mechanism to preserve hackers’ humanity (and sanity) in the face of the
merciless rationale of the machine they engage with everyday. When humor
is woven into the actual code or technical artifacts animating the machine,
it brings otherwise- mechanic language directly and unmistakably into the
realm of human communication.7 Once part of the apparatus of human
communication, humor powerfully con" rms a shared mode of being in the
world; in other words, it af" rms a lifeworld. The very expression of humor
is seen as proof that despite their physical dispersion and sense of indepen-
dence, hackers nonetheless cohabit a shared social terrain built around a
lifelong intimacy with technology and technical thinking— one they have
come to celebrate.

Among hackers, humor functions in multiple capacities and undoubtedly
re2 ects the value they place on productive autonomy as well as the drive to
perform cleverness. Much of their humor is ironic— a play with form. Its pur-
pose is to arrive on the scene of the joke (often a technical object) unexpect-
edly. This is also the ideal nature of a great hack, insofar as it should surprise
other hackers into a stance of awe. Humor, as Douglas (1975, 96) reminds
us, is “a play upon form that affords an opportunity for realizing that an ac-
cepted pattern has no necessity.” This de" nition bears a striking resemblance
to the pragmatics of hacking; hackers are constantly playing on form, reveal-
ing that there is no single solution to a technical problem. And although
hackers claim it is abominable to reinvent the wheel, in practice, they are
constantly doing so as they follow their own creative instincts and visions.

In its ability to concurrently accentuate inclusiveness and exclusiveness,
and make and level hierarchies, humor shapes conventions of sociality, ide-
als of creativity, and hackers’ attitudes toward one another and outsiders.
Now let’s take a closer look at the tension between individuality and col-
lectivism to which humor so delectably points us.

CO M M U N A L PO P U L I S M A N D IN D I V I D U A L EL I T I S M

If hacker pragmatics oscillate between a respect and disrespect for form,
hacker sociality alternates between communal populism and individual
elitism. Largely by way of F/OSS philosophy, hackers laud mutual aid and

1 0 6 C H A P T E R 3

cooperative reciprocity as vital features of technical collaboration. They
spend an inordinate number of hours helping each other. But there is also
an elitist stance that places an extremely high premium on self- reliance, in-
dividual achievement, and meritocracy.8 While the populist stance af" rms
the equal worth of everyone who contributes to an endeavor, the elitist one
distributes credit, rewarding on the basis of superior accomplishment, tech-
nical prowess, and individual talent— all judged meticulously by other hack-
ers. Hackers will spend hours helping each other, working closely together
through some problem. Yet they also engage in agonistic practices of techni-
cal jousting and boasting with peers, and in turn, this works to create hier-
archies of difference among this fraternal order of “elite wizards.” Ullman
(1997, 101) condenses this tension into few words: “Humility is as manda-
tory as arrogance.” The line between elitism and populism is not simply an
intellectual afterthought posed by me, the anthropologist, but also a living,
relevant, affective reality discussed and dissected by hackers.

This duality arises during the course of their work, and is openly dis-
cussed in ethical and pragmatic terms. On the one hand, hackers speak of
the importance of learning from others and construe knowledge production
as a collective enterprise— and this rhetoric is frequently matched in practice
by truly generous and copious acts of sharing. In any given minute of the
day, I can log into one of the developers’ IRC channels, and there will be
some developers asking a question, getting an answer, and giving thanks, as
this example illustrates:

<zugschlus> does anybody know how to con! gure sound in KDE4? [KDE
is a desktop environment.]

<pusling> Zugschlus: in systemsettings
<zugschlus> pusling: applications => settings?
<kibi> but AFAICT [“as far as I can tell”], what you have in svn helped me

build various thingies against libqt4- dev and friends.
<pusling> Zugschlus: computer > s- ystemsettingns
<pusling> KiBi: I think qt4 is now waiting in new.
<zugschlus> pusling: that part only has home, network, root and trash.
<kibi> pusling: oh, ok :(
<pusling> Zugschlus: do you have the package systemsettings installed?
<pusling> KiBi: so if you have special contacts to ftp team, feel free to use

them.
<kibi> pusling: yep, seen it.
* kibi can try
<kibi> Ganneff: mhy: ^^^ if you want to help kfreebsd- * folks get more

packages built, fast- tracking qt4- x11 would really be great. Thanks for
considering. :)

<zugschlus> pusling: no, that was missing. thanks.
<pusling> Zugschlus: you then probably want to make sure you have

kde- minimal installed.

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 7

Guiding this practice is the idea that the free software project represents an
endeavor that far exceeds any single person’s efforts, and thus everyone’s
contribution is highly regarded, whether it involves " ling a bug report or
offering a signi" cant, large- scale innovation.

On the other hand, hackers often express a commitment to self- reliance,
which can be at times displayed in a quite abrasive and elitist tone. The most
famous token of this stance is the short quip “Read the Fucking Manual”
(RTFM). It is worth noting that accusations or RTFM replies are rarer than
instances of copious sharing. Let me provide two examples of RTFM in ac-
tion. In the " rst, “Error” drops into a new channel after asking a question
in the #perl channel, where he got a prompt RTFM, after which everyone
else went back to discussing the band Metallica. In this channel, they did not
offer an RTFM but instead suggested going to the #metallica channel, which
in this case, is a joke [IRC channels are designated by #name- of- channel].

<813- error> i ask a question in #perl and get RTFM and they go back to
talking about metallica [. . .]

<813- error> d Match digit character <that would be numbers right?
* C4 knows nothing of perl
<modem> same here :/
<modem> ask in #metallica

The second example does not contain a joke but rather only a rebuke in
the form of RTFM:

<karsten> Ace2016: alsamixer / aumix are interactive ncurses programs
<ace2016> so?
<karsten> Ace2016: You may be able to steer ’em w/ stdin as well.
<ace2016> can’t they accept a command like aumix— volume decrease

10% or something like that?
<karsten> Ace2016: RTFM
<karsten> Ace2016: Which is to say, I don’t know. Go look yourself.

These two poles of value re2 ect pervasive features of hacker social and
technical production as it unfolds in everyday life. It only takes a few days of
following hacker technical discussion to realize that many of their conver-
sations, whether virtual or in person, are astonishingly long question- and-
answer sessions. To manage the complexity of the technological landscape,
hackers turn to fellow hackers (along with manuals, books, mailing lists,
documentation, and search engines) for constant information, guidance, and
help. Unlike academics— who at times religiously guard their data or " nd-
ings until published, or only circulate them among a small group of trusted
peers— hackers freely share their " ndings, insights, and solutions. More than
ever, and especially in the context of free software projects, hackers see their
productive mutual aid as the underlying living credo driving free software
philosophy, and the methodology of collaboration and openness. Hackers

2 1 8 N OT E S TO C H A P T E R 3

CH A P T E R 3: TH E CR A F T A N D CR A F T I N E S S O F HA C K I N G

 1. Here is a little more information about the code. The “tr” in this code is a function
that translates all occurrences of the search characters listed, with the corresponding
replacement character list. In this case, the slash character delimits the search list, so the
list of what to search for is the asterisk character. The replacement list is the second as-
terisk character, so overall it is replacing the asterisk with an asterisk. The side effect of
this code is that the “tr” function returns the number of search and replaces performed,
such that by replacing all the asterisks in the variable $sky, with asterisks, the variable
$cnt gets assigned the number of search and replaces that happen, resulting in a count
of the number of stars in the $sky. What follows after the # symbol is a comment, a
nonfunctional operator found in most programs, theoretically supposed to explain what
the code does.

 2. These were once blog entries and no longer exist. These texts are on " le with the author.
Python and Perl are computer languages.

 3. The entries are judged on aesthetics, output, and incomprehensibility, and are only de-
cipherable by the most accomplished of Perl experts, but can undoubtedly be aestheti-
cally admired by all as a postmodern object of utter incomprehension and amusement.
For an insightful discussion of obfuscation in code, see Monfort 2008.

 4. In his engrossing ethnography, Graham Jones (2011) covers the way in which cunning,
cleverness, and inventiveness are learned, performed, valued, and embodied among the
magicians that he worked with in Paris.

 5. For a discussion of some of the tensions in the corporate world that arose due to the
perception of programmers as clever and idiosyncratic, and an excellent history of pro-
grammers, see Ensmenger 2010, especially chapter 3.

 6. http://www.ingen.mb.ca/cgi-bin/news.pl?action=600&id=10383 (accessed No-
vember 20, 2007).

 7. I would like to thank Jonah Bossewitch, who pushed me to think about humor in light
of the rationality of the computer more deeply.

 8. Some notable examples of populist formulations are Computer Lib by Ted Nelson
(1974) and Stallman’s “GNU Manifesto.” For examples of the elitist manifestation, see
Levy 1984; Sterling 1992; Borsook 2000.

 9. http://osdir.com/ml/linux.debian.devel.mentors/2003-03/msg00272.html (accessed
July 5, 2009).

 10. http://osdir.com/ml/linux.debian.devel.mentors/2003-03/msg00225.html (accessed
July 5, 2009).

 11. This is quite similar in logic to liberal notions of states of nature that posit forms of
individuality outside social relations. An interesting question to further explore is why
this view still holds such appeal even though it is most often only conceptualized in
these hypothetical terms.

 12. http://osdir.com/ml/linux.debian.devel.mentors/2003-03/msg00225.html (accessed
July 23, 2010). During interviews, this idea that programming could span the spectrum
from unoriginal functionalism to high art came up again and again. For example, one
programmer characterized it in the following way: “I think it can be art, but it is not
always. [. . .] If I had to pick a comparison, I would pick carpentry because carpen-
try always has that range. You can start with just making a bookcase or something
utilitarian all the way to creating something like creating a piece of art with wood.”
Developers explained their craft triangulated between math/science, engineering, and

N OT E S TO C H A P T E R 4 2 1 9

art. Engineering was usually at the apex, respectively tending toward the side of art or
science, depending on the idiosyncrasies and preferences of the programmer along with
the nature of the project.

 13. For instance, it is routine for project developers to thank users or nonmember develop-
ers for their contributions. By way of illustration, on the Subversion project, which
develops code- tracking software, out of the approximately eighty- seven full and partial
committees, " fty- " ve were thanked by name in a commit log message (that someone
else committed) before they became a committee themselves (as of April 25, 2005).

 14. Luser is a common intentional misspelling of loser. “A luser is a painfully annoying,
stupid, or irritating computer user. The word luser is often synonymous with lamer.
In hackish, the word luser takes on a broader meaning, referring to any normal user
(i.e. not a guru), especially one who is also a loser (luser and loser are pronounced the
same). Also interpreted as a layman user as opposed to power user or administrator”
(http://en.wikipedia.org/wiki/Luser [accessed September 9, 2011]).

 15. http://www.thinkgeek.com/tshirts/frustrations/3239/ (accessed March 21, 2006).
 16. http://lists.debian.org/debian-vote/2005/03/msg00610.html (accessed July 5,

2009).
 17. http://www.mail-archive.com/debian-vote@lists.debian.org/msg08500.html (ac-

cessed July 17, 2010).
 18. http://svn.red-bean.com/repos/kfogel/trunk/.emacs (accessed July 5, 2009).
 19. http://evans-experientialism.freewebspace.com/barthes06.htm (accessed Septem-

ber 17, 2011).
 20. I would like to thank Martin Langhoff, who suggested the name palimpsest for the

authorial tracking that occurs on these version control systems.
 21. Those hackers who use Berkeley Software Distribution licenses place more value on

“freedom of choice” than necessarily recursively feeding modi" ed code back into the
community of hackers. I would still like to point out, however, that by using a Berkeley
Software Distribution license, a hacker has still made a deliberate choice to keep their
code open and accessible to others. The difference is that the license does not mandate
this choice for others and thus adheres to a more negative/libertarian notion of liberty
than that of Mill’s.

CH A P T E R 4: TW O ET H I C A L MO M E N T S I N DE B I A N

 1. A proli" c literature in the sociology and anthropology of science fruitfully dissects how
professional identities along with ethical commitments are established during periods
of training (Good 1994), vocational practice (Gusterson 1998; Luhrmann 2001; Rabi-
now 1996), and are sustained by the coded and metaphoric language of professions that
work to elide ethical concerns (Cohn 1987). All these works have pushed me to think
about how ethical commitments are forged by a range of micropractices, many of them
narrative based.

 2. For the history and working of consensus among Internet engineers, see Kelty 2008;
Gitelman 2006; DeNardis 2009.

 3. For an analysis of similar dynamics among programmers, see Helmreich 1998; Levy
2011.

 4. The analysis of trust in the context of digital media interactions has so far been sporad-
ic, but it is starting to gain momentum. For an edited collection exclusively dedicated

1 0 8 C H A P T E R 3

maintain that this mode of production is responsible for better hackers and
better technology.

Alongside technical question- and- answer sessions, developers dissect
the ethics of their labor. For example, on a Debian mentors’ mailing list
discussion, one aspiring hacker asked, “How did you get from the middle
ground to guru- dom?? Or is the answer that if I need to ask, I will never
be a hacker!!??” A developer known for his humility and proli" c contribu-
tions to the Debian project offered a lengthy response— a small section of
which I quote below. In highlighting the importance of sharing, learning for
others, and even coding for others, he af" rms a populist stance, commonly
expressed by many Debian developers:

One other inspiration for me has been helping people. Though this has
been spottier than I could hope, I do from time to time end up doing
some program entirely because I can see other people need it. This
tends to broaden experience a lot. Things like writing programs for an
unfamiliar platform (microsoft), in a unfamiliar language (spanish),
and needing to work closely with the people who would use it, cannot
help but change how you look at things. My most valuable experi-
ences in this area have been when I had direct contact with the people
who would be using the program, rather than just noticing a hole and
deciding I would try to go " ll it like you did.9

Here he accords weight to pedagogy and collective interdependence in
which learning from and even coding for others is a crucial component of
technical progress as well as self- development.

During this discussion, though, other developers stressed the importance
of independence by urging the questioner to follow his own particular inter-
ests necessary to cultivate technical independence. For example, one devel-
oper offered the following advice:

I think you made two mistakes. [. . .] The " rst is looking to other
people for problems to be solved. You’ll never " nd the inspiration in
solving problems that don’t affect you. Since you don’t feel the itch,
you don’t get much satisfaction from the scratch. Speaking for myself,
I picked up a programming manual for my " rst computer and started
reading; well before I was " nished, I had two dozen ideas for programs
to write. Those programs and their spinoffs kept me busy for a couple
of years, and I loved it. Second, when an itch hits you, don’t research
to see if someone has already solved the problem. Solve it yourself.
Mathematical texts aren’t " lled with answers right beside the prob-
lems; they teach you by making you work out the answers yourself.10

Simply in marking the question as misguided (because he looks to other
people for problems to be solved), this developer asserts the value of self-
determination. The original question violated what is the predominant

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 9

(though not unquestioned) norm of self- suf" ciency among developers— a
norm that captures the isolated and individualistic phenomenology of much
of their labor, which for many hackers commenced in childhood.

One developer, in answering a question I had about the signi" cance of
free software, expressed this stance of technical self- determination and in-
dependence in the following terms: “If I am cut off from the world, then in
theory then I can maintain my own domain over software. I don’t have to
depend on anyone else; I can do it all myself. If my computing environment
diverges from everyone else’s in the world, I can still keep on going.” This
commitment to a fully autonomous, sovereign self who shuns any obvious
signs of dependence on others is a common trait among developers. Given
this mode of laboring, it is not surprising that hackers place so much empha-
sis on autonomy and self- suf" ciency— qualities that are congenial to many
hackers as they resonate so strongly with the very experience of intense
periods of isolated labor.

Yet this statement of independence is based on a hypothetical scenario
of being “cut off from the world”— something even this developer quali" es
as unlikely.11 In most practical instances, hackers are constantly plugged
in, connected through various technical structures of communication. They
work together as well as in complete isolation, for personal and joint pub-
lic projects. Software theorist Matthew Fuller (2008, 5) describes how the
freedom of coding gets subsumed by a host of conditions that always lay
outside code proper: “Computation establishes a toy world in conformity
with its axioms, but at the same time, when it becomes software, it must,
by and large [. . .] come into combination with what lies outside of code.”

Generally, the need to both work alone and with others is experienced
free of contradiction, because the two needs are complementary and readily
recognized as such by most hackers. To take another example from the mail-
ing list discussion on what transforms a mediocre hacker into a great one,
a developer captured this duality by describing how hacking tacks between
two productive extremes— the collaborative and individual— that are not
mutually exclusive:

Creating a linux distribution is a group activity, but creating art is
fundamentally a solitary, private experience. Turn off your internet
connection; sit in a dark room, with nothing but the glow of a moni-
tor, the warmth and hum of your computer, and the ideas will 2 ow:
Sometimes a trickle, sometimes a torrent.12

These two modes can clash, however. This is powerfully signaled through
a form of stylized boasting that contrasts one’s intelligence with the idiocy
of “mere users” of software. While users of free software are often lauded
as essential participants in the broader project of technical development
because they provide insightful queries and bug reports (and also are seen
as possible future hackers), at other times they are deemed second- class

1 1 0 C H A P T E R 3

technical citizens.13 This designation is frequently accomplished through the
only way in which socially uncomfortable topics can be routinely discussed:
by joking. On developer IRC channels, hackers playfully mock users. By
complaining about stupid questions and queries, hackers depict users as less
worthy contributors for lack of technical pro" ciency, or may display their
complaints elsewhere, such as including humorous email signatures that
taunt the wider universe of (l)users.14 This condescending attitude is aptly
and humorously conveyed in the following quote from a developers’ email
signature, originally formulated by Richard Cook: “Programming today is
a race between software engineers striving to build bigger and better idiot-
proof programs, and the Universe trying to produce bigger and better idiots.
So far, the Universe is winning.”

Users, though, are by no means the only type of persons subject to the
humorous or more vitriolic accusation of technical incompetence. If a ques-
tion is posed in the wrong register, is seen as uninteresting, or the answer
can easily be found elsewhere, nearly anyone from a mere user to a “skilled”
developer can receive the stylized and semihumorous RTFM rebuff. Stated
on a hacker site with vivacious bite:

[RTFM] is a big chromatic dragon with bloodshot beady eyes and
fangs the size of oars. RTFM is me screaming at you as " reballs come
out of my mouth to get off your precious no- good tush, march down
to the local bookstore or MAN page repository, and get the eff off my
back because I’m trying very hard to get some freakin’ work done.
Jeez.15

If you are better informed with the knowledge that there is “NO MAN-
UAL,” you can quickly defend your honor (i.e., intelligence) by pointing this
out and gain substantial respect if you take it on yourself to write documen-
tation. Otherwise, you will have to swallow the rebuke, google for the in-
formation, and hope for a better response next time (or simply " nd another
IRC channel and ask elsewhere).

A complicated set of norms and conventions surround asking for help.
They depend on the social context of the query and who is asking the ques-
tion. For example, once someone has garnered a certain amount of trust and
respect, they can usually get away with asking what is seen as a nonchal-
lenging, uninteresting question. Developers who have not yet established
trust will frequently get immediate help if the question is seen to be a chal-
lenge, but a basic questions will raise immediate eyebrows, especially among
strangers or members who are technically unvetted, and therefore must ma-
neuver with more caution and tact.

RTFM is a comedic, though stern, form of social discipline. It pushes other
hackers to learn and code for themselves as well as af" rms that effort has
been put into documentation— an accessible form of information that ben-
e" ts the group— but in a way that still requires independent learning. Many
users and developers complain of the lack of adequate documentation for

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 1

free software, faulting the tendency of some developers to exist in technical
silos, “sel" shly” coding only for themselves, and not attending to the needs
of other users and developers by writing technically boring but necessary
documentation. Many developers also note how the lack of extensive docu-
mentation can hinder collaborative technical work. Thus, when someone
asks for information that in fact does exist in documentation, they often
receive the RTFM rebuke, whose subtext says, “go learn for yourself, es-
pecially since others have already put in the work (i.e., documentation) to
make this happen.” To give too much aid is to deny the conditions necessary
for self- cultivation.

The use of RTFM is disputed as well. During the 2005 Debian project
leader election, the issue of documentation erupted during a mailing list
debate. The subject of RTFM rebukes was broached directly. One developer
argued that RTFM is an in2 ammatory, unproductive response to newcomers
who may " nd themselves confused and overwhelmed with Debian’s techni-
cal and procedural complexity. To make new users feel welcome, he believed
that developers should refrain from replying with RTFM, and instead focus
their efforts on achieving greater transparency and accessibility. While de-
bating a Debian project leader candidate who had been with the project for
years, he conveyed this commitment to corporate populism when he stated:

You know a lot about the project [and its project internals], so it’s all
obvious to you. There are people among us who have not been part
of Debian since 1.1, but who would like to know more about what’s
happening behind the curtains. However, those people are often told
to RTFM or go spend time in the code, or just not taken seriously.16

In response, the Debian project leader candidate defended the general use of
RTFM, concisely enunciating the value of self- determination:

When the code is public, rtfm is the proper answer. One might add
“document it properly afterwards” as well, though. When the data
is available as well, that’s best. Some data cannot be made available
for legal or other binding obligations (new queue, security archive). If
you feel that some bits are missing and need to be documented better,
point them out and get them documented better, maybe by doing it on
your own. I know a lot about the project because I’ve been involved in
many parts. Other developers are involved in many parts as well. Some
other developers mostly whine about not being involved without try-
ing to understand. *sigh*17

In other words, if the requested information is public, it is incumbent on the
developer to seek it out, and if unsatis" ed with the current state of acces-
sibility, then the next logical step is to make it happen— by yourself. If one
does, one can display self- determination and self- development, the vehicles
by which to gain the respect of accomplished peers on a similarly paved
technical path.

1 1 2 C H A P T E R 3

If the subject of elitism erupts on mailing list discussions over project or-
ganization, a form of stylized boasting, taunting, cajoling, and elitist disdain
is also frequently performed through code. Here I provide two examples.
And again note how humor is used in both, to some degree working to
soften the abrasive tone of these messages.

The " rst one is written in the style of an “I- can’t- believe- how- idiotic- this-
problem- I- have- to- solve- is rant” that disparages a bug in the Emacs email
reader. Before addressing the signi" cance of his code, permit me defer to the
coder, Karl Fogel, to explain the context of the problem and the technical
nature of his solution:

Basically, the mailreader insisted on colorizing my mail composition
window, even though I tried every documented method available to
ask it not to do that. In desperation, I " nally wrote code to go “behind
the back” of the mailreader, and fool it into thinking that it had al-
ready done the colorization when it actually hadn’t.18

The comments open with a statement of disbelief; take note of the naming
of the variable, which I highlight in bold and italics:

;; I cannot believe what I have to do to turn off font locking in mail
;; and message buffers. Running “(font- lock- mode - 1)” from every
;; possibly relevant gnus- *, mail- *, and message- * hook still left
my
;; reply buffers font- locked. Arrrgh.
;;
;; So the code below fools font- lock- mode into thinking the buffer
is
;; already fonti! ed (so it will do nothing— see
;; font- lock.el:font- lock- mode for details), and then makes sure
that
;; the very last thing run when I hit reply to a message is to turn
;; off font- lock- mode in that buffer, from post- command- hook.
Then
;; that function removes itself from post- command- hook so it’s
not run
;; with every command.

(defun kf- compensate- for- fucking- unbelievable-
emacs- lossage ()
(font- lock- mode - 1)
(remove- hook
‘post- command- hook
‘kf- compensate- for- fucking- unbelievable- emacs- lossage))

(add- hook ‘font- lock- mode- hook ‘kf- font- lock- mode- hook)
(defun kf- font- lock- mode- hook ()

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 3

(if (or (eq major- mode ‘message- mode)
(eq major- mode ‘mail- mode))
(progn
(make- local- variable ‘font- lock- fonti! ed)
(setq font- lock- fonti! ed t)
(add- hook ‘post- command- hook
‘kf- compensate- for- fucking- unbelievable- emacs-
lossage)
)))

By opening the comments with “I cannot believe what I have to do” and
ending with “Arrrgh,” he signals the fact that this sort of trite problem is so
idiotically banal, it should have never appeared in the ! rst place. Fixing it
is a waste of his superior mental resources. Lest there be any ambiguity as
to what the author really thought about the code, he continues to drive the
point home in his rant by naming the variable with an unmistakably deliber-
ate insult: “compensate- for- fucking- unbelievable- emacs- lossage.”

During the course of my early research, I was shocked at the disjoint
between the in- person real- world “codes of conduct” and the “codes of soft-
ware conduct.” Nothing about this coder’s personality, who I got to know
very well over the course of " ve years, would indicate such haughty decla-
rations. There is no need for such an indication because these enunciations
are rarely a matter of innate psychology. Instead, these are conventionalized
statements by which hackers declare and demarcate their unique contri-
bution to a collective endeavor. They also represent culturally sanctioned
mechanisms for judgment.

Fogel’s code is an apt example of “face work” (Goffman 1967, 5)—
when a hacker is sanctioned to perform a “line,” which is the “pattern
of verbal and nonverbal acts by which he expresses his view of the situ-
ation and through this his evaluation of the participants, especially him-
self.” Within such a presentation, hackers can declare and demarcate their
unique contribution to a piece of software while at the same time prof-
fering technical judgment. One may even say that this taunting is their
informal version of the academic peer- review process. In this particular
case, Fogel is declaring the code he patched as an utter failure of the
imagination.

Because these insults are critical evaluations of work, if hackers dare
to make such pronouncements, they also have to make them technically
clever enough to be accepted as accurate critiques. After a declaration is
made, a hacker should be ready to enter the arena of competitive jousting. If
one hacker judges some piece of code, it is almost guaranteed that another
hacker may reply with chutzpah of their own, often in humorous guise.

The second example demonstrates this type of competitive play of tech-
nical volleyball, a form of “antiphony” of “call and response” common to
jazz poetics (Gilroy 1993, 78). While jazz poetics may seem strange to apply

1 1 4 C H A P T E R 3

to hacking, I will expand on this connection later when addressing hacker
notions of creativity. First, let’s take a closer look at this portion of the code
that shows the use of boasting to induce a response (I have highlighted the
relevant section in italics):

/* Prime number generation
Copyright (C) 1994 Free Software Foundation

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */

#include <stdlib.h>
#include <string.h>

/* Return the next prime greater than or equal to N. */
int
nextprime (int n)
{

static int *q;
static int k = 2;
static int l = 2;
int p;
int *m;
int i, j;

/* You are not expected to understand this. */

if (!q)
{
/* Init */
q = malloc (sizeof (int) * 2);
q[0] = 2;
q[1] = 3;

}

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 5

Derived from the FSF’s Hurd development project, which is its kernel
project, the code is a prime number generator. Programmers have told me
that the technical details are fairly intricate, so I refrain here from providing
an explanation of the actual mechanics of the code, and for the sake of anal-
ysis it is not necessary. The important element is the author’s comment: “/*
You are not expected to understand this. */.” It reveals how boasting is an
open invitation to engage in technical jousting— a playful taunt that explic-
itly encourages the technical comeback that proves the expectation wrong.

The author’s intentions are pretty clear in the code, but here is his ret-
roactive explanation: “At this point I offered the function as a challenge to
Jim Blandy. [. . .] That the function was intended to produce prime num-
bers was never hidden; the challenge was to explain its technique.” Blandy
took the call to technical arms and responded with his own exegesis of the
algorithm. When the original author of the prime number function updated
the code, he changed the taunt to “/* See the comment at the end for an
explanation of the algorithm used. */,” and at the end of the code, stated,
“Jim produced the following brilliant explanation” and included it within
the code (and again, I have indicated the relevant section in italics).

/* Prime number generation
C [. . .]
#include <stdlib.h>
#include <string.h>
/* Return the next prime greater than or equal to N. */ [. . .]
/* See the comment at the end for an explanation of the algo-
rithm
used. */
if (!q)

{
/* Init */ [. . .]

* [This code originally contained the comment “You are
not expected to understand this” (on the theory that ev-
ery Unix- like system should have such a comment some-
where, and now I have to ! nd somewhere else to put it).
I then offered this function as a challenge to Jim Blandy.
At that time only the six comments in the function and
the description at the top were present.
Jim produced the following brilliant explanation.]
The static variable q points to a sorted array of the ! rst l natural
prime numbers. k is the number of elements which have been
allocated to q, l <= k; we occasionally double k and realloc q ac-
cordingly to maintain this invariant.
The table is initialized to contain a few primes (lines 26, 27,
34- 40). Subsequent code assumes the table isn’t empty.

1 1 6 C H A P T E R 3

When passed a number n, we grow q until it contains a prime
>= n
(lines 45- 70), do a binary search in q to ! nd the least prime >=n
(lines 72- 84), and return that. [. . .]

If some hackers are ready to pounce on what they deem as the idiocy
of others, they are also as likely to dole out recognition where they see
" t. Hence, even while hackers are on a path toward self- development, this
self- fashioning is intimately bound to others, not simply because of a love
of tinkering or the dependence derived from collaboration, but because
any meritocratic order based on expertise fundamentally requires others for
constant evaluation as well. Hackers use the path of humor, taunt, jousting,
boasting, and argument for such expressions of technical taste and worthi-
ness, and in the process, cultivate themselves as expert hackers.

JU S T FR E E D O M

Given hackers’ proclivity for expressing cleverness, acknowledgment that
they build on the shoulders of giants, need to garner recognition from oth-
ers, and dual penchant for lauding populist collectivism and individual self-
determination, what might these attributes reveal about hacker notions of
personhood, creativity, and authorship?

It is not surprising that in so much of the literature, hackers are treated
as quintessentially individualistic (Levy 1984; Turkle 1984). “The hacker,”
Turkle (1984, 229) writes, “is the defender of idiosyncrasy, individuality, ge-
nius and the cult of individual.” Some authors argue that this individualism
is a close variant of a politically suspicious libertarianism (Borsook 2000).
Hackers are perpetually keen on asserting their individuality through acts
of ingenuity, and thus these statements are unmistakably correct. In most
accounts on hackers, however, the meaning of this individualism is treated
as an ideological, unsavory cloak or is left underspeci" ed. Why the pro-
nounced performance of individualism? What does it say about how hack-
ers conceptualize authorship? What tensions does it raise?

Because hackers do not automatically treat software as solely derivative
of one laboring mind but instead see it as derivate of a collective effort,
the constant drive to perform ingenuity re2 ects the formidable dif" culty
of claiming discrete inventiveness. After all, much of hacker production is
based on a constant reworking of different technical assemblages directed
toward new purposes and uses— a form of authorial recombination rarely
acknowledged in traditional intellectual property law discourse.

Because of the tendency, especially now more than ever, for hackers to
recognize the reality of collaboration, it may seem that they are moving to-
ward the type of politics and ethics of authorship that 2 atly reject the ideal

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 7

of individualism altogether— a rejection famously explored in the works of
Roland Barthes, Michel Foucault, and Dick Hebdige. In the F/OSS domain,
hackers have not moved, even an inch, to decenter the persona of the author
in the manner, say, most famously exempli" ed by Barthes, who in 1967
sought to dethrone the authority of an author: “To give a text an Author is
to impose a limit on that text, to furnish it with a " nal signi" ed, to close the
writing.”19

Instead, among hackers the authorial " gure seems to speak slightly louder,
clamoring for and demanding credit and recognition, established through
oral histories of software or etched into the infrastructure of production.
Hackers record contributions and attributions in common " les included with
source code, such as the Authors and Contributors " les (Yuill 2008). This ar-
chival drive helps partially explain why certain hackers can also receive the
legendary status they do. This everyday discourse and inscription develops
a shared historical awareness about who contributed what— one that brings
attention to the conditions of production or the nature of the contribution.
Furthermore, accountability and credit are built into many of the technical
tools that facilitate collaboration, such as CVS and Subversion— software
systems used to manage shared source code. These systems give developers
the ability to track (and potentially revert to) incremental changes to " les
and report the changes to a mailing list as they are made, and are often used
concurrently by many developers. Since developers all have accounts, these
technologies not only enable collaboration but also provide precise details
of attribution. Over time, this record accumulates into a richly documented
palimpsest. Though individual attribution is certainly accorded, these tech-
nological palimpsests re2 ect unmistakably that complicated pieces of soft-
ware are held in place by a grand collaborative effort that far exceeds any
one person’s contribution.20

In contrast to many accounts on authorship, I " nd that a short descrip-
tion about the aesthetics of jazz and its “cruel contradiction” is eerily evoca-
tive of the hacker creative predicament:

There is a cruel contradiction implicit in the art form itself. For true
jazz is an art of individual assertion within and against the group.
Each true jazz moment (as distinct from the uninspired commercial
performance) springs from a context in which each artist challenges all
the rest, each solo 2 ight, or improvisation, represents (like the succes-
sive canvases of a painter) a de" nition of his identity: as individual, as
member of the collectivity, and as link in the chain of tradition. Thus,
because jazz " nds its very life in an endless improvisation upon tradi-
tional materials, the jazzman must lose his identity even as he " nds it.
(Ellison 1964, 234; quoted in Gilroy 1993, 79)

Among hackers this cruelty, this dif" culty in establishing discrete originality,
is in reality not so cruel. It is treated like any interesting problem: an enticing

1 1 8 C H A P T E R 3

hurdle that invites rigorous intellectual intervention and a well- crafted so-
lution within given constraints. Hackers clearly de" ne the meaning of the
free individual through this very persistent inclination to " nd solutions;
they revel in directing their faculty for critical thought toward creating bet-
ter technology or more sublime, beautiful code. The logic among hackers
goes that if one can create beauty, originality, or solve a problem within the
shackles of constraints, this must prove a superior form of creativity, intel-
ligence, and individuality than the mere expression of some wholly original
work.

Not every piece of technology made by hackers quali" es as a hack. The
hack is particularly the “individual assertion within and against the group”
(Ellison 1964, 234), which may be easily attached to an individual even
though it is still indebted to a wider tradition and conversation. Hackers
certainly engage in a creative, complex process partially separated from hi-
erarchy, enfolding a mechanics of dissection, manipulation, and reassembly,
in which various forms of collaboration are held in high esteem. Much of
their labor is oriented toward " nding a good enough solution so they can
carry forth with their work. But their form of production is one that also
generates a practice of cordial (and sometimes not- so- cordial) one- upping,
which simultaneously acknowledges the hacker’s technical roots and yet at
times strives to go beyond inherited forms in order to implement a better so-
lution. If this solution is achieved, it will favorably reveal one’s capacity for
original, critical thought— the core meaning of individuality among hackers.

Hackers recognize production as the extension or rearrangement of in-
herited formal traditions, which above all requires access to other people’s
work. This precondition allows one to engage in constant acts of re- creation,
expression, and circulation. Such an imperative goes against the grain of
current intellectual property law rationalizations, which assume that the
nature of selfhood and creativity is always a matter of novel creation or
individualized inventive discovery.

Among F/OSS hackers, the moral economy of selfhood is not easily re-
ducible to modern “possessive individualism” (Graeber 1997; Macpher-
son 1962). Nor does it entirely follow the craftsperson or the stand- alone
romantic author " gured by intellectual property jurisprudence but rather
evinces other sensibilities that point to competing liberal concepts of in-
dividualism and freedom. While hackers envisage themselves as free and
rational agents, in the context of free and open- source hacking, most hack-
ers place less emphasis on the freedom to establish relations of property
ownership and exchange. Instead, they formulate liberty as the condition
necessary for individuals to develop the capacity for critical thought and
self- development.21

While the hacker interpretation of labor, creativity, and individuality
strays from in2 uential liberal understandings of personhood— possessive
individualism— it does not represent a wholly novel take on these themes.

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 9

It aligns with the type of person presupposed in free speech theory, perhaps
most lucidly in Mill’s writings, which in2 uenced the shape, content, and
philosophy of free speech jurisprudence as it now exists in the United States
(Bollinger and Stone 2002; Passavant 2002). Mill, in2 uenced by the Roman-
tic tradition (Halliday 1976), de" nes a free individual as one who develops,
determines, and changes their own desires, capacities, and interests autono-
mously through self- expression, debate, and reasoned deliberation (Donner
1991). It is a vision that fuses utilitarian and romantic commitments, and
is built on the idea of human plasticity and development— the ability of the
self to grow and develop through creative expression, mental activity, and
deliberative discussion, usually by following one’s own personally de" ned
path. As Wendy Donner argues, this form of liberal self- cultivation also re-
quires the establishment of standards by which to judge the development of
the human faculties. Mill’s “transformed conception of utility necessitates a
new method of value measurement which relies heavily on the judgment of
competent agents,” writes Donner (1991, 142), “and thus essentially rests
on a doctrine of human development and self- development.” What is no-
table is how Mill ([1857] 1991, 93) contends in his famous On Liberty that
an individual must follow their own path of development, because “persons
[. . .] require different conditions for their spiritual development.” Even if
this Romantic inclination prioritizes the individual, one can only develop
the critical faculties along with moral and aesthetic standards via a process
of training and open- ended argumentation in debate with other similarly
engaged individuals.

Much of free software legal philosophy and moral sensibilities bear
remarkable similarities to this Millian (and thus also Romantically in-
formed) vision of personhood, self- development, and liberty, although
there are differences and speci" cations tied to hacking’s unique relations
between persons, labor, and technology. Hackers place tremendous faith
in the necessity and power of expressive activity that springs from deep
within the individual self— an expression that acts as the motor for posi-
tive technical change. Progress depends on the constant expression and
reworking of already- existing technology. Thought, expression, and inno-
vation should never be sti2 ed, so long as, many developers told me during
interviews, “no one else is hurt”— a sentiment that is part and parcel of
Millian free speech theories.

Free software developers have come to treat the pursuit of knowledge
and learning with inestimable high regard— as an almost sacred activity,
vital for technical progress and essential for improving individual talents. As
one software developer observed, “I can use the code for my own projects
and I can improve the code of others. I can learn from the code so that I
can become a better programmer myself, and then there is all my code out
there so that you can use it. It is just freedom.” The spirit of this statement
is ubiquitous among F/OSS developers. A utilitarian ethic of freedom and

1 2 0 C H A P T E R 3

openness is increasingly seen as not only obvious but also indispensable in
order to develop the “state of the art.”

For developers, technical expression should always be useful. If it isn’t,
it denies the nature of software, which is to solve problems. Yet hackers
also place tremendous value on the aesthetic pleasures of hacking, produc-
ing technology and software that may not have any immediate value but
can be admired simply on its own elegant terms— as a conduit for personal
self- expression.

Over years of coding software with other developers in free software
projects where discourses about liberty run rampant, many developers come
to view F/OSS as the apex of writing software, as we will see in the next
chapter. It has, they say, the necessary legal and material features that can
induce as well as fertilize creative production. In contrast to the corporate
sphere, the F/OSS domain is seen as establishing the freedom necessary to
pursue personally de" ned technical interests in a way that draws on the
resources and skills of other individuals who are chasing down their own
interests. In other words, the arena of F/OSS establishes all the necessary
conditions (code, legal protection, technical tools, and peers) to cultivate the
technical self and direct one’s abilities toward the utilitarian improvement of
technology. While many developers enjoy working on their corporate proj-
ects, there is always a potential problem over the question of sovereignty.
One developer told me during an interview that “managers [. . .] decide the
shape of the project,” while the F/OSS arena allows either the individual or
collective of hackers to make this decision instead. F/OSS allows for techni-
cal sovereignty.

The hacker formulation of individuality, as the pursuit of one’s interest
for the mutual bene" t of each other and society, is an apt example of the
general characterization of modern individualism as de" ned, according to
Taylor (2004, 20), by “relations of mutual service between equal individu-
als.” While much of liberal thought understands mutual service in terms of
economic exchange, hackers relate to it through the very act of individual
expression and technical creation— the only sound ways to truly animate
the uniqueness of one’s being.

CO N C L U S I O N

As noted in the previous section, even though hackers tend to approach
other hackers as equals, they also construct themselves as high- tech cogno-
scenti creating the bleeding edge of technology. This elitism follows from
their commitment to the organizational ideal of meritocracy, a performance-
based system that applauds individual skill, encourages respectful competi-
tion between peers, and sanctions hierarchies between developers, especially
in the F/OSS project to be discussed at length in the subsequent chapter.

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 2 1

The meritocratic ideal, ubiquitous in liberal thought, has particular reso-
nance in the US popular imaginary. The United States is often thought of
as a living embodiment of meritocracy: a nation where people are judged
on their individual abilities alone. The system supposedly works so well
because, as the media myth goes, the United States provides everyone with
equal opportunity, usually through public education, to achieve their goals.
As such, the hierarchies of difference that arise from one’s ability (usually to
achieve wealth) are sanctioned by this moral order as legitimate.

In many senses, hackers have drawn from what is still a prevalent trope of
meritocracy to conceptualize how they treat one another and self- organize.
In his classic account of hackers, Levy (1984, 43) includes this principle as
one of the six elements that de" ne the hacker ethic, noting that “hackers
should be judged by their hacking, not bogus criteria such as degrees, age,
race, or position,” in which “people who trotted in with seemingly impres-
sive credentials were not taken seriously until they proved themselves at the
console of the computer.”

Though written twenty years ago, this commitment to meritocracy still
holds undeniable sway in the way F/OSS hackers construct norms of so-
ciality and envision selfhood, not because it exists in the same exact way,
but rather because hackers have given it new meaning by organizationally
building the institution of the free software project guided by a dedication
to meritocracies. Hackers who participate in free software projects routinely
asserted that F/OSS projects are run as meritocracies. The doors are open
to anyone, they insist; respect and authority are accorded along the lines of
superior and frequently individual technological contribution. As we will
see in the next chapters, F/OSS hackers may not build perfect meritocracies
and yet they are certainly motivated to implement them.

For F/OSS hackers, it is imperative to constantly and recursively equal-
ize the conditions by which other hackers can develop their skills and prove
their worth to peers. As part of this equalization process, one must endow
the community of hackers with resources like documentation and the fruits
of one’s labor: source code. The free software hacker does not privatize the
source of value created, even those exceptional pieces of code that are un-
deniably one’s own and seen to emerge from sheer technical ability. Within
F/OSS, this value is fed back and circulated among peers, thereby contrib-
uting to an endowed and growing pool of resources through which other
hackers can constantly engage in their asymptotic process of self- cultivation.

This constant recirculation of value is one way in which hackers can
explicitly downplay their elitism and display their sound technical inten-
tions to their peers. Their implementation of meritocracy contrasts mark-
edly with the ideal of it in capitalist societies, where the privatization of
value is legitimate as long as one generates wealth (or gains other forms of
status) through one’s personal ability. In fact, numerous issues over who
and what are responsible for equalizing the terrain of competition plague

1 2 2 C H A P T E R 3

liberal democracies marked by a meritocratic ideal. This leveling is often seen
as secured through such avenues as public education. That, in turn, raises
questions like, Should capitalist philanthropists (such as John Rockefeller in
the past and Gates in the present), individuals, governments, or property tax
fund public education? With hackers, these sets of thorny issues are mini-
mized, partially resolved by their constant recirculation of value, notably
software and documentation, as well as debates and con2 icts over mentor-
ship and helping.

Still, the predominant sentiment is that once knowledge has been released
to the collective of hackers, individuals must, on their own two feet, prove
their worth by creating new forms of value that can be fed back recursively
to the community. If one seeks too much help, this violates the hacker imple-
mentation of the proper meritocratic order, and one might be subjected to a
stylized rebuff such as the common RTFM.

Among hackers, the commitment to elitism and meritocracy historically
has run fairly strong. There is still an ambivalent relationship to elitism and
this meritocratic ideal, however, as I will explore in more detail in the next
chapter. I will show how those vested with authority on software projects,
because of their success, are usually met with some degree of suspicion,
and thus jokes and sometimes accusations of cabals run rampant among
hackers. This requires them to constantly perform their trustworthiness and
demonstrate their good technical intentions to the community at large. I
now turn to the institution, the free software project, where technological
production unfolds, and where commitments to free speech and meritocracy
are further speci" ed under the aegis of a tremendously varied set of ethical
practices.

N O T E S

••

IN T R O D U C T I O N: A TA L E O F TW O WO R L D S

 1. https://www.gnu.org/copyleft/gpl.html (accessed September 22, 2011).
 2. It is now routine for anthropologists to unpack the effects of liberal formations by at-

tending to the fraught politics of multiculturalism and secularism, the establishment
of publics, the coconstruction of markets, marketing, and consumer desire, and the
political changes wrought by new national constitutions and neoliberal policies (see
Comaroff and Comaroff 2000, 2003; Ferguson and Gupta 2002; Haydn 2003; Mah-
mood 2004; Ong 2006; Povinelli 2002, 2006; Scott 2011). Despite this rich literature,
the in! uence of liberal values in the context of Anglo- European societies still tends
to " gure thinly or inconsistently, either as an external economic in! uence that shapes
cultural expressions, or more richly, as relevant to the discussion of secularism, re-
ligion, publics, and most especially, multiculturalism. The study of privacy and free
speech, for instance, has tended to come in normative, philosophical, and legal terms
(Bollinger and Stone 2002; Nissenbaum 2009; Rule 2009; Solove 2010). There is, how-
ever, a small but growing body of anthropological literature on liberalism and technol-
ogy (Helmreich 1998; Malaby 2009) as well as the anthropology of the press and free
speech (Boyer 2010; Keane 2009). For an enlivening historical account on liberalism
as a lived set of principles in mid- Victorian Britain, see Hadley 2010.

 3. Because the bulk of my research was conducted on Debian, a free software project, and
with developers involved with other free software projects, my analysis also tilts in the
direction of free over open- source software. And given how much attention has already
been placed on open- source over free software, it is key to add this neglected perspec-
tive. But much of this book clearly applies to open source, for while even if open- source
developers and projects de- emphasize a moral language of freedom (Chopra and Dex-
ter 2007), they still routinely advance liberal ideals in, for example, their commitments
to meritocracy and rational, public debate.

 4. I am indebted to the stellar cultural analysis of liberalism offered by Stuart Hall (1986),
who makes the compelling case that liberalism is not only a set of political creeds but
also exists as cultural common sense composed of a set of interconnected principles
that “hang together.” Hall’s de" nition is useful because he highlights some core fea-
tures (such as a mistrust of authority and an accentuated commitment to individual-
ism), yet he is careful not to pose a single logic to liberalism. He also argues that in its
historical and lived dimensions, liberalism has incarnated into what he calls “variants
of liberalism,” replete with differences and contradictions. These differences and con-
tradictions are still part and parcel of liberalism’s life, and are evident among hackers.

 5. A less humorous consequence of this ambivalence is the limited funding options avail-
able to students and researchers who choose to remain in North America for " eldwork
(with the exception of those studying indigenous communities). Not only are existing
funds nearly impossible to live on; there are few overall funding sources as well. So

2 1 2 N OT E S TO I N T RO D U C T I O N

even if we have managed to enlarge our " eld of inquiry, this is a case in which economic
constraint works to discourage researchers from walking down a recently opened path.

 6. For thoughtful contemplations on the method of participant observation and " eldwork,
see Clifford and Marcus 1986; Comaroff and Comaroff 1992; Faubion and Marcus
2009.

 7. Digital Millennium Copyright Act, 17 U.S.C. 1201(a)(1)(a).
 8. One of the most crystalline examples of this utilitarian justi" cation is provided in Harp-

er and Row, Publishers, Inc. v. Nation Enterprises, a Supreme Court case deliberated in
1985. The question at hand was whether the magazine, the Nation, was entitled under
the fair use doctrine to publish a three- hundred- word excerpt, in a thirteen- thousand-
word article, from President Gerald R. Ford’s twenty- thousand- word memoir pub-
lished by Harper and Row. The court ruled in favor of Harper and Row, upholding the
ideal that property rights promote a public bene" t by inducing creation. Sandra Day
O’Connor delivered the majority opinion portraying copyright as “the engine of free
expression.” Versions of this utilitarian rationale, in which Internet protocol (IP) is the
basis for harvesting “knowledge,” continue to be expressed and hold sway within the
context of an heightened neoliberal expansion of intellectual property rights, making
existing tensions between expressive and IP rights more palpable and acute than ever.

 9. The Silicon Valley geek entrepreneur, who I am not addressing in this book, aligns quite
closely with neoliberal aspirations. For a discussion of Web 2.0 technologies, entrepre-
neurs, and neoliberalism, see Marwick 2010.

 10. http://mbrix.dk/" les/quotes.txt (accessed April 10, 2007).
 11. http://www.loyalty.org/~schoen/ (accessed March 19, 2007).
 12. http://www.gnu.org/gnu/manifesto.html (accessed July 30, 2007).
 13. https://upload.wikimedia.org/wikipedia/commons/b/b7/Anti-sec_manifesto.png

(accessed, March 26, 2012).
 14. Editorial, “The Victor Spoiled,” 2600: The Hacker Quarterly 15, no. 4 (1998– 99): 4.
 15. Although my exploration remains hemmed to free software and may not be relevant to

all domains of hacking, there is certainly some overlap between what I describe and
instances of hacking unrelated to the world of free software.

 16. Gender also receives only cursory attention. The reasons for this omission are multiple,
but foremost, I believe far more substantial research on the topic is needed before quali-
" ed and fair judgments as to the complicated dynamics at play can be posed, especially
since analyses must interrogate wider social dynamics such as education and childhood
socialization that have little to do with free software projects. In the last two years, a
series of vibrant initiatives around diversity and gender have proliferated in the con-
text of free software, with tremendous support from the wider developer community—
something I have not been able to research adequately.

 17. While this book attends to a number of translocal aspects of F/OSS development, it by
no means captures the reality of all different places where free software has taken hold,
such as India, Vietnam, Peru, and Brazil. For instance, many free speech commitments
explored in this book are shared by Brazilian developers I worked with, even while the
general story of free software in Brazil and other parts of Latin America looks quite
distinct from what happened in the United States given how entwined it became with
national politics (Chan 2008; Schoonmaker 2009; Murillo 2009).

 18. The region, despite being dominated by high- tech capitalism, is by no means monolithic.
It is home to a range of distinct values, stretching from staid engineering commitments

N OT E S TO C H A P T E R 1 2 1 3

(English- Leuck 2002), to countercultural expressions (Turner 2006) and new age cur-
rents (Zandbergen 2010), to undoubtedly liberal (Malaby 2009) and neoliberal orienta-
tions (Marwick 2010).

CH A P T E R 1: TH E L I F E O F A FR E E SO F T WA R E HA C K E R

 1. Most of the developers I interviewed were between the ages of eighteen and thirty-
" ve, although there were a number over thirty- " ve years old (there were some under
eighteen who I interacted with but did not formally interview due to provisions in
my Institutional Review Board application). Thus, this life history is located very
much in time, with the narrative spanning the period between the late 1970s until the
present.

 2. Warez typically refers to commercial or proprietary software that has been cracked or
pirated, and therefore illegally circulated to the larger public (in the past on BBSs and
currently on the Internet). For this to happen, the software’s copy protection measure
must be deactivated. In contrast, shareware is copyrighted software that is released by
its author initially for free on a trial basis or under some other set of conditions.

 3. For decades, computer science was a branch of mathematics or class offerings were
scattered in different departments. Although MIT was home to many important com-
puter projects, for instance, it only began offering an undergraduate computer science
course in 1969. The " rst computer science department was established in 1962 at Pur-
due University, and it was not until the mid- to late 1970s and early 1980s when many
US universities started to establish stand- alone computer science departments (Ens-
menger 2010, 120– 21). See also “History of the Department of Computer Sciences at
Purdue University,” http://www.cs.purdue.edu/history/history.html (accessed Octo-
ber 23, 2011).

 4. These quotes are culled from my life history interviews.
 5. Ef" ciency can mean various things for programming/software, including running fast-

er, using less computing resources, or both.
 6. For a comprehensive history of the BBS era, see the excellent eight- part documentary

BBS: The Documentary by Jason Scott (2005).
 7. BBSs also played a prominent role among phreaks and underground hackers (Thomas

2003; Sterling 1992). Usenet, a large newsgroup service, was signi" cant for hackers as
well (Pfaffenberger 1996).

 8. FidoNet, established in 1984, was an independent mail and information transport sys-
tem that connected BBSs together.

 9. IRC happens on IRC servers (EFnet, Freenode, etc.) that run software that allow users
to set up “channels” and connect to them. There are a number of major IRC servers
around the world that are linked to each other. Anyone can create a channel, and once
created and populated with users, all others in the channel can see anything anyone
types in a given channel. Using IRC client software, a user can connect to multiple
servers at once, and join multiple channels, switching conversations by switching tabs
or windows. While conversation on the channel is public, one can also initiate multiple
private conversations. IRC has grown tremendously since it was " rst created in 1988. In
July 1990, IRC averaged at 12 users on 38 servers. Now there are thousands of servers,
and over 100,000 users on some servers. To give a sense of its growth, one of the more

