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Fermat’s theorem

Theorem
Suppose that c is a maximum or minimum of a differentiable
function f (x) in the interval (a,b), then f ′(c) = 0.

Proof.
Suppose c is a maximum: f (x) ≤ f (c) for all x . We have

f ′(c) = lim
x→c+

f (x) − f (c)

x − c
≤ 0

and also

f ′(c) = lim
x→c−

f (x) − f (c)

x − c
≥ 0.

So f ′(c) = 0.

If c is a minimum, the proof is the same, but with the inequalities all reversed.

The theorem holds as stated for local maxima, since we can always shrink the interval if necessary.

Application: The extreme value table.
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Rolle’s theorem

Theorem
Suppose that f is a continuous function on [a,b] that is
differentiable on the open interval (a,b). If f (a) = f (b), then
there is a c ∈ (a,b) such that f ′(c) = 0.

Proof.
By the extreme value theorem,a the function f has an absolute
maximum and an absolute minimum in [a,b]. Two cases:

Case 1: Both absolute extrema are at the endpoints. Since
f (a) = f (b), the absolute minimum and maximum are
equal to one another, and so f is constant: f ′(x) = 0 at
every point in that case.
Case 2: There is an absolute extremum x = c in (a,b). By
Fermat’s theorem, f ′(c) = 0 at this absolute extremum

aWhich is very difficult to prove
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Things to consider

What happens if we relax the differentiability requirement?
Is there a differentiable function f on an interval [a,b] such
that f (a) = f (b), and there is more than one point where
f ′(c) = 0 in the interior?

Jonathan Holland Lecture 22: Three theorems about the derivative



The Mean Value Theorem

Theorem
If f is continuous on a ≤ x ≤ b and differentiable on a < x < b,
then there exists a number c with a < c < b such that

f ′(c) =
f (b)− f (a)

b − a
.

Proof.

Let g(x) = f (x)− (f (b)− f (a)) x−a
b−a . Then g(a) = f (a) and

g(b) = f (a) as well. So g(b) = g(a). By Rolle’s theorem,
g′(c) = 0 for some c ∈ (a,b). Written out, this is

g′(c) = f ′(c)− f (b)− f (a)
b − a

= 0

as required.
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An example

Let f (x) = 1/x on [1,3].
The slope of the secant line of f (x) is

f (3)− f (1)
3− 1

=
1/3− 1

2
= −1

3

The derivative of f (x) is f ′(x) = −1/x2.
So, with c =

√
3, we have f ′(c) = −1/3 is the slope of the

secant line.
In this case, we can find c by solving the equation

f ′(c) =
f (3)− f (1)

3− 1

The mean value theorem tells us that this equation must
have a solution, even if it doesn’t tell us how to find it.
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Interpretations

Geometrical interpretation: The secant line to the graph
has the same slope as the tangent line at x = c.
Physical interpretation: At some point of the domain of a
function f , the instantaneous rate of change is equal to the
average rate of change of f over its domain.
Example: You drive on route 90 West from the Corning exit
to the PA state line. The total distance is 133.6 miles, and it
takes you exactly 2 hours. Your average speed was
133.6/2 = 66.8 mph.
At some point during the journey, your speed was exactly
66.8 mph.
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Several corollaries

We have the constant function theorem:

Corollary

Suppose f ′(x) = 0 throughout an interval [a,b], then f (x) is
constant.

Proof.
If there were two points, say c and d , where f (c) 6= f (d), then at
some x between c and d , f ′(x) = f (c)−f (d)

c−d 6= 0. This is ruled out
by hypothesis, so we must have f (c) = f (d) for all c,d .

Corollary

If f ′(x) = g′(x) throughout [a,b], then f (x) = g(x) + C for some
constant C.

Proof.
Apply the constant function theorem to f (x)− g(x).
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The increasing function theorem

Theorem
Suppose that f is continuous on a ≤ x ≤ b and differentiable on
a < x < b.

If f ′(x) > 0 on a < x < b, then f is increasing on a ≤ x ≤ b.
If f ′(x) < 0 on a < x < b, then f is decreasing on
a ≤ x ≤ b.

Proof.
Suppose that f ′(x) > 0 on a < x < b
Pick x1, x2 with a ≤ x1 < x2 ≤ b
We’ll show that f (x1) < f (x2)

We want to show f (x2)− f (x1) > 0
The MVT implies that there is a point c between x1 and x2
such that f ′(c)(x2 − x1) = f (x2)− f (x1) > 0.
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Application: guaranteeing solutions of equations

Let f (x) = sin x + 2x + 1. Show that f (x) = 0 has a unique
solution.
We have f (−2π) < 0 and f (0) = 1 > 0, so there is a
solution between −2π and 0 by the IVT
Also f ′(x) = cos x + 2 > 0 for all real numbers x . So f is an
increasing function.
Hence the graph of y = f (x) can only cross the x-axis at a
single point.
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Finding the solution, via Newton’s method

Iterate to find the solution:
1 Start with guess xn.
2 The next guess is xn+1 = xn − f (xn)/f ′(xn).

For f (x) = sin x + 2x + 1, f ′(x) = cos x + 2.
Initial guess x0 = 0.
x1 = 0− f (0)/f ′(0) = −1/3
x2 = −1/3− f (−1/3)/f ′(−1/3) ≈ −0.335418
x3 = x2 − f (x2)/f ′(x2) ≈ −0.33541803
x4 = x3 − f (x3)/f ′(x3) ≈ −0.33541803238494

So the unique solution to sin x + 2x + 1 = 0 is
x ≈ −0.33541803238494
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The racetrack principle

Theorem
Let f and g be two continuous functions on a ≤ x ≤ b,
differentiable on a < x < b, and that f ′(x) ≤ g′(x) for a < x < b.
Hypothesis: Horse f always runs slower than horse g

1 If f (a) = g(a) then f (x) ≤ g(x) for a ≤ x ≤ b. If horses f
and g start the race at the same time, then horse f always
runs behind horse g.

2 If g(b) = f (b) then f (x) ≥ g(x) for a ≤ x ≤ b. If horses f
and g finish the race at the same time, then horse f would
have needed a head start

Example

Show that ex ≥ 1 + x for all values of x . Let f (x) = 1 + x ,
f (x) = ex . For x ≥ 0, f ′(x) ≤ g′(x) so use 1. For x ≤ 0,
f ′(x) ≥ g′(x) so use 2.
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