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Preview

o Terms: stationary point, critical point, local
maximum/minimum, absolute maximum/minimum,
extremum, inflection point

o Skills: There are three kinds of problem, each can be
solved by making two different kinds of table.

O To find the local extrema of a function y = f(x), first find the stationary points by solving f/(x) = 0
for x, and then make a table of signs of f/(x) in each of those intervals. Use this table to decide
whether the stationary points are maxima/minima/neither. (Note: This uses a table constructed
from values of the derivative f’ (x).)

@ To find the absolute extrema of a function y = f(x) on a compact interval [a, b], make a table of
values of the function f sampled at the endpoints of the interval a and b, as well as any stationary
points in the interior of the interval. (Note: This uses a table constructed from the values of the
function f(x).)

O To find the inflection points of a function y = f(x), first solve f/(x) = 0 for x, and then make a
table of signs of f’/(x) in each of those intervals. (Note: This uses a table constructed from values

of the second derivative '’ (x).)
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What derivatives tell us about a function and its graph

If f > 0 on an interval, then f is increasing on that interval.
If f/ < 0 on an interval, then f is decreasing on that interval.
When we graph a function on a calculator, we may miss
some important features.

o How do we decide on an appropriate interval to graph?

o Information from the derivative can help to identify regions
with interesting behavior.

©

©

©

Example
Consider the function f(x) = x3 — 9x? — 48x + 52.
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f(x) = x3 — 9x2 — 48x + 52

o What are the stationary points of f?
o f/(x) =3x2—18x —48 = 3(x?> —6x — 16) = 3(x +2)(x — 8)

o Make a table...
X< -2 | -2<x<8 8 < x
Sign of 1’ + - +
Behavior of f | Increasing | Decreasing | Increasing
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Local maxima and minima

Definition
Suppose p is a point in the domain of f:
o f has a local minimum at p if f(p) is less than or equal to
the values of f for all points near p.

o fhas a local maximum at p if f(p) is greater than or equal
to the values of f for all points near p.
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How do we detect a local maximum or minimum?

o In the preceding example, f(x) = x3 — 9x2 — 48x + 52.
o We found the stationary points x = —2 and x = 8.

o These played a key role in leading us to the local maxima
and minima.

Theorem

Suppose f is defined on an interval and has a local maximum
or minimum at the point x = a, which is not an endpoint of the
interval. If f is differentiable at x = a, then f'(a) = 0. Thus ais a
Stationary point.
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A warning...

©

Not every stationary point is a local maximum or minimum.
An example is f(x) = x®

What is the stationary point?

Why isn’t this a local maximum? minimum?

©

©

©
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Testing for local maxima and minima at a stationary point

Theorem
Suppose p is a stationary point of a differentiable function f.
o If f' changes from negative to positive at p, then f has a
local minimum at p.
o Iff' changes from positive to negative at p, then f has a
local maximum. )
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Examples

y

x(x=1)

o Why are there no local maxima or minima of
g(x) = sinx + 2€* for x > 0? What about x < 0?

o f(x) =
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Higher derivatives

o f’(x) is the derivative of f'(x), called the second derivative
of f.

o Example: If s(t) = position, s'(t) =7, s"(t) =7
o f”(x) is the third derivative, etc.

o s"(t) is called the jerk: it represents a sudden change in
acceleation that one feels as a “jerk”. Slamming on the

brakes, e.g.
o Snap, crackle, pop!
o Leibniz notation: dX{, dxé’, etc
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What does the second derivative tell us?

©

If 7 > 0 on an interval, then f’ is increasing over that
interval.

Draw a picture.

If /> 0 on an interval, then the graph of f is concave up
on the interval.

If 7 < 0 on an interval, then f' is decreasing over that
interval.

If f/ < 0 on an interval, then the graph of f is concave
down on the interval.
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Examples
o f(x)=x8
o f(x)=x*
o f(x) =x3 - 9x - 48x + 52
e f(X) = x(x1—1)
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Inflection points

Definition

An inflection point is a point where the concavity of a graph
changes. (So from up to down or down to up.)

Example

o f(x) = x3 has an inflection point at 0

o Where are the inflection points of
f(x) = x3 — 9x? — 48x + 527
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Absolute maxima and minima

Definition

Let f be a function. The point x = p is an absolute maximum of
fif f(x) < f(p) for all values of x. The point x = g is an
absolute maximum of f if f(x) < f(q) for all values of x.

Examples:

o Let f(x) = x2 on (—oc0, o0). What is the absolute minimum?
maximum? (if any)

o Is the local minimum of f(x) = x> — 9x2 — 48x + 52 an
absolute minimum? Is the local maximum an absolute
maximum?
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Local versus absolute

A local extremum does not need to be an absolute
extremum.

©

©

A function may fail to have absolute extrema.

©

Draw the graph of a differentiable function on the interval
(—1, 1) that has a single stationary point at x = 0, which is
a local minimum, but no absolute maximum.

o Is there a function on [—1, 1] that has no absolute
maximum or minimum?
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Extreme value theorem

Theorem

Let f be a continuous function on the closed and bounded
interval [a, b]. Then f has an absolute maximum and an
absolute minimum in that interval. Furthermore, if f is
differentiable in the interior of the interval, then the absolute
extrema must occur either at the endpoints a, b, or at some
stationary point(s) in (a, b).
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Absolute extrema: the table method

Example

Find the absolute extrema of the function f(x) = x> — 2x on the
interval [—1, 4].

Solution

We compute f'(x) = 2x — 2 = 0 when x = 1 (stationary pt).
x | f(x)

Now make a table: 11 4 So the absolute minimum is at
4| 8

x =1, and has the value f(1) = —1. The absolute max is at

x = 4, with the value f(4) = 8.
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