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Differentials of composite functions, first method

The rules for computing d(function) propagate down the
parse tree using a list of tree-rewriting rules.
Example: Compute d(cos(x2 + 1)). Parse tree:
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Differentials of composite functions, first method

d(cos(x2 + 1)) = d(cosu)
= − sinu du

= − sin(x2 + 1)d(x2 + 1)

= − sin(x2 + 1) (2x dx)

= −2x sin(x2 + 1)dx
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A second example

Problem

Compute the differential of y = (x2 + 1)10.

We parse the expression from the outside in.
Note that the power is the outside function.
Use the power rule

d(u10) = 10u9 du

with u = x2 + 1 (the inside function)
So

d(x2 + 1)10 = 10(x2 + 1)9d(x2 + 1)

= 10(x2 + 1)9 (2x dx)

= 10(x2 + 1)92x dx

=⇒ d
dx

[(x2 + 1)10] = 10(x2 + 1)92x
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Another look: Dependency diagrams and the chain
rule

A dependency diagram is a simplified parse tree that
allows us to express a complicated function as a
composite of several simpler functions.

y = u10

u = x2 + 1

x

Read from the bottom up: beginning from x , how can I
build up the function y in several simpler steps?
The chain rule says how to calculate the derivative dy/dx :

dy
dx

=
dy
du

du
dx
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The derivative of a composite function

Suppose that z = g(x) and y = f (z), so y = f (g(x)).
We calculate

dy = f ′(z)dz = f ′(g(x))g′(x)dx

Or, stated another way,
dy
dx

=
dy
dz

dz
dx

.

Theorem
If f and g are differentiable functions, then

d
dx

(f (g(x))) = f ′(g(x))g′(x).

In words: The derivative of a composite function is the product
of the derivatives of the outside and inside functions. The
derivative of the outside function must be evaluated at the value
of the inside function.
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An example

Example: Climbing a mountain, the air temperature H
depends on elevation y . That is, H = f (y).
The rate of change of the air temperature is affected by
how fact the temperature changes with altitude (about
−3.3◦F for every 1000 feet), and by how fast we are
climbing (say 500ft/h).
So the rate of change of air temperature with respect to
time is

−3.3◦F
1000ft

× 500ft
hr

= −1.15◦F/hr

Notice that the units of the final answer (◦F/hr ) already tell
us what we need to do: multiply something with units of
◦F/ft by something with units of ◦ft/hr .
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Intuition behind the chain rule

Since temperature is a function of height H = f (y) and
height is a function of time y = g(t), we can think of
temperature as a composite function of time H = f (g(t)),
with f as the outside function and g the inside function.

rate of change
of composite

=
rate of change

of outside function
× rate of change

of inside function
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Graphical example

Find d
dx (f (g(x)))|x=3

−4. −3. −2. −1. 1. 2. 3. 4. 5. 6. 7.

−2.

−1.

1.

2.

3.

4.

5.

6.

0

y = g(x)

y = f (x)
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Algebraic examples

(x2 + 1)100
√

x2 + 5x − 2
1

x2+x4

e3x

ex2√
e−x/7 + 5

(1− e2
√

t)19
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