- 1. Find all solutions x to the equation $2^{x^2} = 3^{x+1}$. You may leave your answer in terms of natural logarithms. Solution. Taking logarithms gives $x^2 \ln 2 = (x+1) \ln 3$, so $x^2 \ln 2 - x \ln 3 - \ln 3 =$. Appling the quadratic formula gives...
- 2. Compute the limits:

(a)
$$\lim_{x \to \infty} \frac{x-2}{x^2-1}$$

(b)
$$\lim_{x \to 1^+} \frac{x-2}{x^2-1}$$

(c)
$$\lim_{x \to \infty} \frac{3x^2-12}{x^2-3x+2}$$

(d)
$$\lim_{x \to 2} \frac{3x^2-12}{x^2-3x+2}$$

(e)
$$\lim_{x \to \sqrt{2}} \frac{3-\sqrt{5x^2-1}}{x^2-2}$$

(f)
$$\lim_{x \to \infty} \frac{1-\sqrt{4x^2+1}}{3x-2}$$

Answers: (a) 0, (b) $-\infty$, (c) 3, (d) 12, (e) -5/6, (f) -2/3

- 3. This problem concerns the function $f(x) = \frac{x+1}{x+2}$.
 - (a) Find the domain of f(x). All $x \neq -2$
 - (b) Find any vertical asymptotes of y = f(x). There is a VA at x = -2
 - (c) Find any *horizontal asymptotes* of y = f(x). There is an HA at y = 1
 - (d) Compute $\lim_{x \to -2^+} \frac{x+1}{x+2}$.

Near x = -2, we have $\frac{x+1}{x+2} \approx \frac{-2+1}{x+2} = \frac{-1}{x+2}$. Since this is negative to the right of its asymptote, $\lim_{x \to -2^+} \frac{x+1}{x+2} = -\infty$.

- (e) Compute $\lim_{x \to -2^{-}} \frac{x+1}{x+2}$ $\lim_{x \to -2^{-}} \frac{x+1}{x+2} = +\infty.$
- (f) Compute $\lim_{x \to \infty} \frac{x+1}{x+2}$. $\lim_{x \to \infty} \frac{x+1}{x+2} = 1.$
- (g) Find the inverse function of f(x). We want to solve $y = \frac{x+1}{x+2}$ for x in terms of y. Clearing denominators gives y(x+2) = x+1. Now, we want to move all terms involving x to one side of the equation, and all terms not involving x to the other side. We have yx - x = -2y + 1. Factoring the left-hand side gives x(y-1) = -2y + 1 so $x = \frac{y-1}{-2y+1}$. Thus $f^{-1}(x) = \frac{x-1}{-2x+1}$
- (h) Find the range of f(x). All $x \neq 1$.

4. Consider the polynomial $f(x) = x^2(x-2)^3(x-1)(x+1)^2$. Determine the local behavior of f(x) near each of the zeros x = -1, 0, 1, 2. Sketch a graph of the function, showing the correct end behavior. Answer:

> Near x = -1, $f(x) \approx 3^3 \cdot 2 \cdot x^2$ Near x = 0, $f(x) \approx 2x^2$ Near x = 1, $f(x) \approx -4(x-1)$ Near x = 2, $f(x) \approx 72(x-2)^3$

- 5. In 2006, the population of Iceland was 300,000. In 2016, the population is 330,000. Assume that the population grows exponentially.
 - (a) Write the exponential model $P = P_0 a^t$ that best fits this data. (The variable t can be in years from 2006.)
 - (b) Use your model to estimate the population of Iceland in 2026.
 - (c) Find how long it will take the population to double.

In units of thousands, $P = 300(1.1)^{t/10}$. So $P(2) = 300(1.1)^2 = 300(1.21) = 363$ thousand. To find the doubling time, we want to solve $(1.1)^{t/10} = 2$ for t. Logarithms gives $\frac{t}{10} \ln 1.1 = \ln 2$ so $t = \frac{10 \ln 2}{\ln 1.1}$

6. (a) State the intermediate value theorem.

If f(x) is a continuous function for $a \le x \le b$, then whenever k is a value between f(a) and f(b), there is a value c of x between a and b for which f(c) = k.

(b) The function $f(x) = x^3 + \sin x$ is known to be continuous. Prove that a solution of the equation f(x) = 1 exists.

We have f(0) = 0 < 1 and $f(\pi/2) = \pi^3/8 + 1 > 1$, so there is a value of x between 0 and $\pi/2$ where f(x) = 1.

7. Give an example of a rational function f(x) satisfying all of the following conditions:

- $\lim_{x \to \infty} f(x) = 1$
- $\lim_{x \to 1} f(x) = -\infty$
- f(0) is undefined, but $\lim_{x \to 0} f(x) = 2$.

An example is

$$f(x) = -\frac{x}{x(x-1)^2} + \frac{x^2+3}{x^2+1}$$