Lecture 19: Derivatives of implicit functions, logarithms, and inverse trig functions

Jonathan Holland

Rochester Institute of Technology

October 18, 2017

Jonathan Holland Lecture 19: Derivatives of implicit functions, logarithms, and inverse

- Terms: Implicit function, relative differential, logarithmic derivative
- Concepts:
 - The differential of the natural logarithm is d(ln u) = ^{au}/_u (the relative differential of u).
 - The equation du = u d ln u is useful for calculations where u has lots of products or exponentials in it (*logarithmic* differentiation)
 - The differential of the arctangent is $d(\arctan u) = \frac{du}{1+u^2}$
 - The differential of the arcsine is $d(\arcsin u) = \frac{du}{\sqrt{1-u^2}}$
- Skills:
 - To find the equation of the tangent line to a curve given implicitly, like $x^2 + xy = 1$, at a point (x_0, y_0) , take the *d* of both sides, then set $x = x_0$, $y = y_0$, and $dx = x x_0$, $dy = y y_0$.
 - To find the slope dy/dx to the tangent line of an implicit curve like x² + xy = 1: (1) take the differential of both sides, (2) solve for dy, (3) divide through by dx.

- Terms: Implicit function, relative differential, logarithmic derivative
- Concepts:
 - The differential of the natural logarithm is $d(\ln u) = \frac{du}{u}$ (the relative differential of u).
 - The equation $du = u d \ln u$ is useful for calculations where *u* has lots of products or exponentials in it (*logarithmic differentiation*)
 - The differential of the arctangent is $d(\arctan u) = \frac{du}{1+u^2}$
 - The differential of the arcsine is $d(\arcsin u) = \frac{du}{\sqrt{1-u^2}}$
- Skills:
 - To find the equation of the tangent line to a curve given implicitly, like $x^2 + xy = 1$, at a point (x_0, y_0) , take the *d* of both sides, then set $x = x_0$, $y = y_0$, and $dx = x x_0$, $dy = y y_0$.
 - To find the slope dy/dx to the tangent line of an implicit curve like x² + xy = 1: (1) take the differential of both sides, (2) solve for dy, (3) divide through by dx, (2), (3) divide through by dx.

- Terms: Implicit function, relative differential, logarithmic derivative
- Concepts:
 - The differential of the natural logarithm is $d(\ln u) = \frac{du}{u}$ (the relative differential of u).
 - The equation $du = u d \ln u$ is useful for calculations where u has lots of products or exponentials in it (*logarithmic differentiation*)
 - The differential of the arctangent is $d(\arctan u) = \frac{du}{1+u^2}$
 - The differential of the arcsine is $d(\arcsin u) = \frac{du}{\sqrt{1-u^2}}$
- Skills:
 - To find the equation of the tangent line to a curve given implicitly, like $x^2 + xy = 1$, at a point (x_0, y_0) , take the *d* of both sides, then set $x = x_0$, $y = y_0$, and $dx = x x_0$, $dy = y y_0$.
 - To find the slope dy/dx to the tangent line of an implicit curve like x² + xy = 1: (1) take the differential of both sides, (2) solve for dy, (3) divide through by dx, (2), (3) divide through by dx.

- Terms: Implicit function, relative differential, logarithmic derivative
- Concepts:
 - The differential of the natural logarithm is $d(\ln u) = \frac{du}{u}$ (the relative differential of u).
 - The equation $du = u d \ln u$ is useful for calculations where u has lots of products or exponentials in it (*logarithmic differentiation*)
 - The differential of the arctangent is $d(\arctan u) = \frac{du}{1+u^2}$
 - The differential of the arcsine is $d(\arcsin u) = \frac{du}{d_1}$
- Skills:
 - To find the equation of the tangent line to a curve given implicitly, like $x^2 + xy = 1$, at a point (x_0, y_0) , take the *d* of both sides, then set $x = x_0$, $y = y_0$, and $dx = x x_0$, $dy = y y_0$.
 - To find the slope dy/dx to the tangent line of an implicit curve like x² + xy = 1: (1) take the differential of both sides, (2) solve for dy, (3) divide through by dx, (2), (3) divide through by dx.

- Terms: Implicit function, relative differential, logarithmic derivative
- Concepts:
 - The differential of the natural logarithm is $d(\ln u) = \frac{du}{u}$ (the relative differential of u).
 - The equation $du = u d \ln u$ is useful for calculations where *u* has lots of products or exponentials in it (*logarithmic differentiation*)
 - The differential of the arctangent is $d(\arctan u) = \frac{du}{1+u^2}$
 - The differential of the arcsine is $d(\arcsin u) = \frac{du}{\sqrt{1-u^2}}$
- Skills:
 - To find the equation of the tangent line to a curve given implicitly, like $x^2 + xy = 1$, at a point (x_0, y_0) , take the *d* of both sides, then set $x = x_0$, $y = y_0$, and $dx = x x_0$, $dy = y y_0$.
 - To find the slope dy/dx to the tangent line of an implicit curve like x² + xy = 1: (1) take the differential of both sides, (2) solve for dy, (3) divide through by dx, (2), (3) divide through by dx.

- Terms: Implicit function, relative differential, logarithmic derivative
- Concepts:
 - The differential of the natural logarithm is $d(\ln u) = \frac{du}{u}$ (the relative differential of u).
 - The equation $du = u d \ln u$ is useful for calculations where u has lots of products or exponentials in it (*logarithmic differentiation*)
 - The differential of the arctangent is $d(\arctan u) = \frac{du}{1+u^2}$
 - The differential of the arcsine is $d(\arcsin u) = \frac{du}{\sqrt{1-u^2}}$
- Skills:
 - To find the equation of the tangent line to a curve given implicitly, like $x^2 + xy = 1$, at a point (x_0, y_0) , take the *d* of both sides, then set $x = x_0$, $y = y_0$, and $dx = x x_0$, $dy = y y_0$.
 - To find the slope dy/dx to the tangent line of an implicit curve like x² + xy = 1: (1) take the differential of both sides, (2) solve for dy, (3) divide through by dx, (2), (3) + (2), (3)

- Terms: Implicit function, relative differential, logarithmic derivative
- Concepts:
 - The differential of the natural logarithm is $d(\ln u) = \frac{du}{u}$ (the relative differential of u).
 - The equation $du = u d \ln u$ is useful for calculations where u has lots of products or exponentials in it (*logarithmic differentiation*)
 - The differential of the arctangent is $d(\arctan u) = \frac{du}{1+u^2}$
 - The differential of the arcsine is $d(\arcsin u) = \frac{du}{\sqrt{1-u^2}}$
- Skills:
 - To find the equation of the tangent line to a curve given implicitly, like $x^2 + xy = 1$, at a point (x_0, y_0) , take the *d* of both sides, then set $x = x_0$, $y = y_0$, and $dx = x x_0$, $dy = y y_0$.
 - To find the slope dy/dx to the tangent line of an implicit curve like x² + xy = 1: (1) take the differential of both sides, (2) solve for dy, (3) divide through by dx.

- Terms: Implicit function, relative differential, logarithmic derivative
- Concepts:
 - The differential of the natural logarithm is $d(\ln u) = \frac{du}{u}$ (the relative differential of u).
 - The equation $du = u d \ln u$ is useful for calculations where u has lots of products or exponentials in it (*logarithmic differentiation*)
 - The differential of the arctangent is $d(\arctan u) = \frac{du}{1+u^2}$
 - The differential of the arcsine is $d(\arcsin u) = \frac{du}{\sqrt{1-u^2}}$
- Skills:
 - To find the equation of the tangent line to a curve given implicitly, like $x^2 + xy = 1$, at a point (x_0, y_0) , take the *d* of both sides, then set $x = x_0$, $y = y_0$, and $dx = x x_0$, $dy = y y_0$.
 - To find the slope dy/dx to the tangent line of an implicit curve like x² + xy = 1: (1) take the differential of both sides, (2) solve for dy, (3) divide through by dx.

- Terms: Implicit function, relative differential, logarithmic derivative
- Concepts:
 - The differential of the natural logarithm is $d(\ln u) = \frac{du}{u}$ (the relative differential of u).
 - The equation $du = u d \ln u$ is useful for calculations where u has lots of products or exponentials in it (*logarithmic differentiation*)
 - The differential of the arctangent is $d(\arctan u) = \frac{du}{1+u^2}$
 - The differential of the arcsine is $d(\arcsin u) = \frac{du}{\sqrt{1-u^2}}$
- Skills:
 - To find the equation of the tangent line to a curve given implicitly, like $x^2 + xy = 1$, at a point (x_0, y_0) , take the *d* of both sides, then set $x = x_0$, $y = y_0$, and $dx = x x_0$, $dy = y y_0$.
 - To find the slope dy/dx to the tangent line of an implicit curve like x² + xy = 1: (1) take the differential of both sides, (2) solve for dy, (3) divide through by dx.

- An *explicit function* is one of the form y = f(x), where y is solved for in terms of x.
- For example, $y = 1/x x^2$ is an explicit function.
- An *implicit function* is a relation between the x and y variables in which y is not isolated on one side.
- For example, $x^2 + xy = 1$ is an implicit function.
- Sometimes it is possible to solve an implicit function for *y*, thus converting it to an explicit function.
- But this is not always desirable. E.g.: The unit circle $x^2 + y^2 = 1$. If we try to solve, we get $y = \pm \sqrt{1 x^2}$, which is rather awkward.
- It may not even be possible. For example ye^{-y²} = x cannot be solved for y explicitly.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

ъ

- An *explicit function* is one of the form y = f(x), where y is solved for in terms of x.
- For example, $y = 1/x x^2$ is an explicit function.
- An *implicit function* is a relation between the *x* and *y* variables in which *y* is not isolated on one side.
- For example, $x^2 + xy = 1$ is an implicit function.
- Sometimes it is possible to solve an implicit function for *y*, thus converting it to an explicit function.
- But this is not always desirable. E.g.: The unit circle $x^2 + y^2 = 1$. If we try to solve, we get $y = \pm \sqrt{1 x^2}$, which is rather awkward.
- It may not even be possible. For example ye^{-y²} = x cannot be solved for y explicitly.

イロト 不得 とくほ とくほ とうほ

- An *explicit function* is one of the form y = f(x), where y is solved for in terms of x.
- For example, $y = 1/x x^2$ is an explicit function.
- An *implicit function* is a relation between the x and y variables in which y is not isolated on one side.
- For example, $x^2 + xy = 1$ is an implicit function.
- Sometimes it is possible to solve an implicit function for *y*, thus converting it to an explicit function.
- But this is not always desirable. E.g.: The unit circle $x^2 + y^2 = 1$. If we try to solve, we get $y = \pm \sqrt{1 x^2}$, which is rather awkward.
- It may not even be possible. For example ye^{-y²} = x cannot be solved for y explicitly.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- An *explicit function* is one of the form y = f(x), where y is solved for in terms of x.
- For example, $y = 1/x x^2$ is an explicit function.
- An *implicit function* is a relation between the x and y variables in which y is not isolated on one side.
- For example, $x^2 + xy = 1$ is an implicit function.
- Sometimes it is possible to solve an implicit function for *y*, thus converting it to an explicit function.
- But this is not always desirable. E.g.: The unit circle $x^2 + y^2 = 1$. If we try to solve, we get $y = \pm \sqrt{1 x^2}$, which is rather awkward.
- It may not even be possible. For example ye^{-y²} = x cannot be solved for y explicitly.

- An *explicit function* is one of the form y = f(x), where y is solved for in terms of x.
- For example, $y = 1/x x^2$ is an explicit function.
- An *implicit function* is a relation between the x and y variables in which y is not isolated on one side.
- For example, $x^2 + xy = 1$ is an implicit function.
- Sometimes it is possible to solve an implicit function for *y*, thus converting it to an explicit function.
- But this is not always desirable. E.g.: The unit circle $x^2 + y^2 = 1$. If we try to solve, we get $y = \pm \sqrt{1 x^2}$, which is rather awkward.
- It may not even be possible. For example ye^{-y²} = x cannot be solved for y explicitly.

- An *explicit function* is one of the form y = f(x), where y is solved for in terms of x.
- For example, $y = 1/x x^2$ is an explicit function.
- An *implicit function* is a relation between the x and y variables in which y is not isolated on one side.
- For example, $x^2 + xy = 1$ is an implicit function.
- Sometimes it is possible to solve an implicit function for *y*, thus converting it to an explicit function.
- But this is not always desirable. E.g.: The unit circle $x^2 + y^2 = 1$. If we try to solve, we get $y = \pm \sqrt{1 x^2}$, which is rather awkward.
- It may not even be possible. For example ye^{-y²} = x cannot be solved for y explicitly.

- An *explicit function* is one of the form y = f(x), where y is solved for in terms of x.
- For example, $y = 1/x x^2$ is an explicit function.
- An *implicit function* is a relation between the x and y variables in which y is not isolated on one side.
- For example, $x^2 + xy = 1$ is an implicit function.
- Sometimes it is possible to solve an implicit function for *y*, thus converting it to an explicit function.
- But this is not always desirable. E.g.: The unit circle $x^2 + y^2 = 1$. If we try to solve, we get $y = \pm \sqrt{1 x^2}$, which is rather awkward.
- It may not even be possible. For example ye^{-y²} = x cannot be solved for y explicitly.

- An *explicit function* is one of the form y = f(x), where y is solved for in terms of x.
- For example, $y = 1/x x^2$ is an explicit function.
- An *implicit function* is a relation between the x and y variables in which y is not isolated on one side.
- For example, $x^2 + xy = 1$ is an implicit function.
- Sometimes it is possible to solve an implicit function for *y*, thus converting it to an explicit function.
- But this is not always desirable. E.g.: The unit circle $x^2 + y^2 = 1$. If we try to solve, we get $y = \pm \sqrt{1 x^2}$, which is rather awkward.
- It may not even be possible. For example ye^{-y²} = x cannot be solved for y explicitly.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

Take the differential of both sides:

 $d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

$$\frac{dy}{dx} = \frac{-2x - y}{x}$$

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

Take the differential of both sides:

 $d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

$$\frac{dy}{dx} = \frac{-2x - y}{x}$$

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

- Take the differential of both sides: $d(x^{2} + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$
- This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

• Finally, dividing by dx gives

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

• Take the differential of both sides:

 $d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

$$\frac{dy}{dx} = \frac{-2x - y}{x}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

• Take the differential of both sides:

 $d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

$$\frac{dy}{dx} = \frac{-2x - y}{x}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

• Take the differential of both sides:

$$d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

$$\frac{dy}{dx} = \frac{-2x - y}{x}$$

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

• Take the differential of both sides:

$$d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

$$\frac{dy}{dx} = \frac{-2x - y}{x}$$

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

• Take the differential of both sides:

$$d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

• Take the differential of both sides:

$$d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

• Take the differential of both sides:

$$d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

• Take the differential of both sides:

$$d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$$

 This is a linear equation for dy, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

Finally, dividing by dx gives

Example

Find dy/dx if $x^2 + xy = 1$.

Note: Stewart says "use implicit differentiation". Equivalent to the class way, but the class way is better.

• Take the differential of both sides:

$$d(x^2 + xy) = d(1) \implies 2x \, dx + x \, dy + y \, dx = 0$$

• This is a linear equation for *dy*, which we solve and simplify (factor):

$$x dy = -2x dx - y dx \implies dy = \frac{-2x - y}{x} dx$$

• Finally, dividing by dx gives

$$\frac{dy}{dx} = \frac{-2x - y}{x}$$

 $d\ln x = \frac{dx}{x}$

Proof.

Let $y = \ln x$. We want to find dy/dx. Remember that $y = \ln x$ means that $x = e^y$. Taking differentials of both sides gives $dx = e^y dy = x dy$. So $\frac{dx}{x} = dy$ as required.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$d\ln x = \frac{dx}{x}$$

Proof.

Let $y = \ln x$. We want to find dy/dx. Remember that $y = \ln x$ means that $x = e^y$. Taking differentials of both sides gives $dx = e^y dy = x dy$. So $\frac{dx}{x} = dy$ as required.

$$d\ln x = \frac{dx}{x}$$

Proof.

Let $y = \ln x$. We want to find dy/dx. Remember that $y = \ln x$ means that $x = e^y$. Taking differentials of both sides gives $dx = e^y dy = x dy$. So $\frac{dx}{x} = dy$ as required.

$$d\ln x = \frac{dx}{x}$$

Proof.

Let $y = \ln x$. We want to find dy/dx. Remember that $y = \ln x$ means that $x = e^y$. Taking differentials of both sides gives $dx = e^y dy = x dy$. So $\frac{dx}{x} = dy$ as required.

$$d\ln x = \frac{dx}{x}$$

Proof.

Let $y = \ln x$. We want to find dy/dx. Remember that $y = \ln x$ means that $x = e^y$. Taking differentials of both sides gives $dx = e^y dy = x dy$. So $\frac{dx}{x} = dy$ as required.

$$d\ln x = \frac{dx}{x}$$

Proof.

Let $y = \ln x$. We want to find dy/dx. Remember that $y = \ln x$ means that $x = e^y$. Taking differentials of both sides gives $dx = e^y dy = x dy$. So $\frac{dx}{x} = dy$ as required.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ □ ● ● ● ● ● ●

Theorem

$$d\ln x = \frac{dx}{x}$$

Proof.

Let $y = \ln x$. We want to find dy/dx. Remember that $y = \ln x$ means that $x = e^y$. Taking differentials of both sides gives $dx = e^y dy = x dy$. So $\frac{dx}{x} = dy$ as required.

(本間) (本語) (本語) (二語)

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^{x}) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

 $= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^{x}) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

 $= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about d(x^x)?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^{x}) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

 $= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^{x}) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

 $= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$

Now we can use the chain rule:

 $d(x^{x}) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$

 $= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$

 $= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^{x}) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^{x}) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^{x}) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^x) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x\frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^x) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x\frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^x) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^x) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● の Q ()~

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^x) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$$

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^x) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^{x} (\ln x + 1)$$

(日本) (日本) (日本)

E DQC

- The power rule says $d(x^a) = ax^{a-1}dx$ for constant *a*
- The rule for exponentials says d(a^x) = (ln a)a^x dx for constant a
- What about $d(x^x)$?
- Note that it's not x^{x-1} dx because the exponent isn't constant. Also, it's not (ln x)x^x dx because the base isn't constant.
- Instead a trick is to write it as $x^x = (e^{\ln x})^x = e^{x \ln x}$
- Now we can use the chain rule:

$$d(x^x) = d(e^{x \ln x}) = e^{x \ln x} d(x \ln x)$$

$$= e^{x \ln x} (dx \ln x + xd \ln x) = e^{x \ln x} (dx \ln x + x \frac{1}{x} dx)$$

$$= e^{x \ln x} (\ln x + 1) dx = x^x (\ln x + 1)$$

(日本) (日本) (日本)

E DQC

Logarithmic differentiation (handout)

Figure: What toy does Billy want to help him compute $d \left[\frac{(t^2+1)t}{e^t(t-2)} \right]$

$$\left[\frac{t^2+1}{t^2(t-2)(t-3)}\right]$$
?

Jonathan Holland Lecture 19: Derivatives of implicit functions, logarithms, and inver-

Logarithmic differentiation (handout)

Figure: What toy does Billy want to help him compute $d \left[\frac{(t^2+1)t}{e^t(t-2)} \right]$

$$\left[\frac{t^2+1}{t^2(t-2)(t-3)}\right]$$
?

Jonathan Holland Lecture 19: Derivatives of implicit functions, logarithms, and inver-

Logarithmic differentiation (handout)

Figure: What toy does Billy want to help him compute $d \left[\frac{(t^2+1)(t+2)^{10}}{e^t(t-2)(t-3)} \right]$?

Jonathan Holland Lecture 19: Derivatives of implicit functions, logarithms, and inver-

Theorem

d arctan $x = \frac{dx}{1+x^2}$

Proof.

Remember that $y = \arctan x$ means $x = \tan y$. So $dx = d \tan y = \sec^2 y \, dy$. Solving for dy gives $dy = \frac{dx}{\sec^2 y}$. From the triangle $\sec^2 y = 1 + x^2$. So $dy = \frac{dx}{1 + x^2}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem

d arctan $x = \frac{dx}{1+x^2}$

Proof.

Remember that $y = \arctan x$ means $x = \tan y$. So $dx = d \tan y = \sec^2 y \, dy$. Solving for dy gives $dy = \frac{dx}{\sec^2 y}$. From the triangle $\sec^2 y = 1 + x^2$. So $dy = \frac{dx}{1+x^2}$.

·편→ ★ 편→ · · · · · · ·

Theorem

d arctan $x = \frac{dx}{1+x^2}$

Proof.

Remember that $y = \arctan x$ means $x = \tan y$. So $dx = d \tan y = \sec^2 y \, dy$. Solving for dy gives $dy = \frac{dx}{\sec^2 y}$. From the triangle $\sec^2 y = 1 + x^2$. So $dy = \frac{dx}{1+x^2}$.

·편→ ★ 편→ · · · · · · ·

Theorem

d arctan $x = \frac{dx}{1+x^2}$

Proof.

Remember that $y = \arctan x$ means $x = \tan y$. So $dx = d \tan y = \sec^2 y \, dy$. Solving for dy gives $dy = \frac{dx}{\sec^2 y}$. From the triangle $\sec^2 y = 1 + x^2$. So $dy = \frac{dx}{1 \pm y^2}$.

프) (프) 프

Theorem

d arctan $x = \frac{dx}{1+x^2}$

Proof.

Remember that $y = \arctan x$ means $x = \tan y$. So $dx = d \tan y = \sec^2 y \, dy$. Solving for dy gives $dy = \frac{dx}{\sec^2 y}$. From the triangle $\sec^2 y = 1 + x^2$. So $dy = \frac{dx}{1+x^2}$.

Jonathan Holland Lecture 19: Derivatives of implicit functions, logarithms, and inver-

프) (프) 프

Theorem

d arctan $x = \frac{dx}{1+x^2}$

Proof.

Remember that $y = \arctan x$ means $x = \tan y$. So $dx = d \tan y = \sec^2 y \, dy$. Solving for dy gives $dy = \frac{dx}{\sec^2 y}$. From the triangle $\sec^2 y = 1 + x^2$. So $dy = \frac{dx}{1+x^2}$.

Jonathan Holland Lecture 19: Derivatives of implicit functions, logarithms, and inver-

프) (프) 프

Theorem

d arctan $x = \frac{dx}{1+x^2}$

Proof.

Remember that $y = \arctan x$ means $x = \tan y$. So $dx = d \tan y = \sec^2 y \, dy$. Solving for dy gives $dy = \frac{dx}{\sec^2 y}$. From the triangle $\sec^2 y = 1 + x^2$. So $dy = \frac{dx}{1+x^2}$.

1

Theorem

d arctan $x = \frac{dx}{1+x^2}$

Proof.

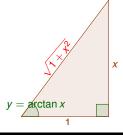
Remember that $y = \arctan x$ means $x = \tan y$. So $dx = d \tan y = \sec^2 y \, dy$. Solving for dy gives $dy = \frac{dx}{\sec^2 y}$. From the triangle $\sec^2 y = 1 + x^2$. So $dy = \frac{dx}{1+x^2}$.

Theorem

d arctan $x = \frac{dx}{1+x^2}$

Proof.

Remember that $y = \arctan x$ means $x = \tan y$. So $dx = d \tan y = \sec^2 y \, dy$. Solving for dy gives $dy = \frac{dx}{\sec^2 y}$. From the triangle $\sec^2 y = 1 + x^2$. So $dy = \frac{dx}{1+x^2}$.



3