Handout: Implicit curves review

- Chain rule: If v = f(u), then dv = f'(u)du
- Power rule: $d(u^a) = au^{a-1}du$
- Constant multiple rule: d(au) = a du
- Sum rule: d(u+v) = du + dv
- Constant rule: da = 0
- Product rule: $d(uv) = v \, du + u \, dv$

• Quotient rule:
$$d\left(\frac{u}{v}\right) = \frac{v\,du - u\,dv}{v^2}$$

- $d(e^u) = e^u du$, $d(a^u) = (\ln a)a^u du$
- $d(\sin u) = \cos u \, du$, $d(\cos u) = -\sin u \, du$
- $d(\tan u) = \sec^2 u \, du$
- $d(\ln u) = \frac{du}{u}$
- $d(\arctan u) = \frac{du}{1+u^2}$, $d(\arcsin u) = \frac{du}{\sqrt{1-u^2}}$

1. If $x^4 + x^2y^2 + y^3 = 5$, find dy/dx.

Step 1. Apply the differential d to both sides of the equation.

Step 2. Use the rules (above) until all appearances of the differential d are with an atomic variable (bird-with-food). **Step 3.** Solve for dy.

Step 4. Divide by dx.

2. Find an equation of the tangent line to $x^2 - xy - y^2 = 1$ through the point (2, 1).

Step 1. Apply the differential d to both sides of the equation.

Step 2. Use the rules (above) until all appearances of the differential d are with an atomic variable (bird-with-food). **Step 3.** Replace x by 2 and y and by 1, and then dx by x - 2 and dy by y - 1.

3. The Lambert W-function W(x) is defined implicitly by the equation

$$x = W e^W$$
.

Show that $\frac{dW}{dx} = \frac{W}{x(1+W)}$