% File: 11-03-2021.tex % Created: 10:16:20 Wed, 03 Nov 2021 EDT % Last Change: 10:16:20 Wed, 03 Nov 2021 EDT % \documentclass[letterpaper]{article} \usepackage{amsmath} \usepackage{graphicx} \usepackage{cancel} \usepackage{amssymb} \usepackage{listings} \usepackage[shortlabels]{enumitem} \usepackage{soul} %\usepackage[smartEllipses,hashEnumerators,hybrid]{markdown} \usepackage{minted} \usepackage{geometry} \usepackage{dirtytalk} \usepackage{lplfitch} \geometry{portrait, margin=1in} %\begin{minted}[linenos,bgcolor=LightGray]{[language]} \date{11/03/2021} \title{% Expanded TFL Proofs\\ \large PHIL--205--01:Symbolic Logic} \author{Blizzard MacDougall} \begin{document} \maketitle \pagenumbering{arabic} Below is a complete list of available rules for TFL Proofs. \section{Conjunction $\land$ Rules} \subsection{$\land$ Elim} \fitchctx { \pline[m.]{A\land B}\\ \pline[n.]{A}[\lande{m}] } \subsection{$\land$ Intro} \fitchctx { \pline[m.]{A}\\ \pline[n.]{B}\\ \pline[r.]{A\land B}[\landi{m, n}] } \section{Disjunction $\lor$ Rules} \subsection{$\lor$ Intro} \fitchctx { \pline[m.]{A}\\ \pline[n.]{A\lor B}[\lori{m}] } \subsection{$\lor$ Elim} \fitchctx { \pline[m.]{A\lor B}\\ \subproof { \pline[i.]{A} } { \pline[j.]{C} } \subproof { \pline[k.]{B} } { \pline[l.]{C} } \pline[r.]{C}[\lore{m}{i--j}{k--l}] } \section{Conditional $\rightarrow$ Rules} \subsection{$\rightarrow$ Elim (\textit{Modus Ponens})} \fitchctx { \pline[m.]{P\lif Q}\\ \pline[n.]{P}\\ \pline[r.]{Q}[\life{m}{n}] } Note that order in the reference is important. You must first reference the conditional before referencing the anticedent. \subsection{$\rightarrow$ Intro} \fitchctx { \subproof { \pline[i.]{A} } { \pline[j.]{B} } \pline[r.]{A\lif B}[\lifi{i--j}] } \section{Biconditional $\leftrightarrow$ Rules} \subsection{$\leftrightarrow$ Intro} \fitchctx { \subproof { \pline[i.]{A} } { \pline[j.]{B} } \subproof { \pline[k.]{B} } { \pline[l.]{A} } \pline{A\liff B}[\liffi{i--j}{k--l}] } \subsection{$\leftrightarrow$ Elim} \fitchctx { \pline[m.]{A\liff B}\\ \pline[n.]{A}\\ \pline[r.]{B}[\liffe{m}{n}] } As with $\rightarrow$'s reference, first list the biconditional, then the condition. \section{Negation $\neg$ Rules} \subsection{$\neg$ Elim} Any double negation can be eliminated. \subsection{$\bot$ Intro} This is proven by showing a contradiction.\\ \fitchctx { \pline[1.]{P}\\ \pline[2.]{\neg P}\\ \pline[3.]{\lfalse} } \subsection{$\neg$ Intro} We have to prove this by proof by contradiction. (Shown below)\\ \fitchctx { \subproof { \pline[1.]{P} } { \pline[2.]{\lfalse} } \pline[3.]{\neg P}[\lfalsei{1--2}] } \subsection{Explosions} \fitchctx { \pline[m.]{\lfalse}\\ \pline[r.]{A}[\textbf{X:} m] } Anything can be proven after a contradiction. \subsection{Tertium non datur} Latin for \say{no third way}.\\ \fitchctx { \subproof { \pline[i.]{A} } { \pline[j.]{B} } \subproof { \pline[k.]{\lnot A} } { \pline[l.]{B} } \pline[r.]{B}[\textbf{TND:} i--j, k--l] } \section{New Additions} \subsection{Disjunctive Syllogism} \fitchctx { \pline[m.]{P\lor Q}\\ \pline[n.]{\lnot Q}\\ \pline[r.]{P}[\textbf{DS:} 1, 2] } \subsection{Modus Tollens} \fitchctx { \pline[m.]{P\lif Q}\\ \pline[n.]{\lnot Q}\\ \pline[r.]{\lnot P}[\textbf{MT:} 1, 2] } \section{Example Theorem Proofs} \subsection{Frege's Theorem} \fitchprf {} { \subproof { \pline[1.]{P\lif (Q\lif R)} } { \subproof { \pline[2.]{P\lif Q} } { \subproof { \pline[3.]{P} } { \pline[4.]{Q\lif R}[\life{1}{3}]\\ \pline[5.]{Q}[\life{2}{3}]\\ \pline[6.]{R}[\life{4}{5}] } \pline[7.]{P\lif R}[\lifi{3--6}] } \pline[8.]{(P\lif Q)\lif(P\lif R)}[\lifi{2--7}] } \pline[9.]{(P\lif (Q\lif R))\lif((P\lif Q)\lif(P\lif R))}[\lifi{1--8}] } \end{document}