commit aa0d42cacf093a6fcca872edc954f6f812926a17 upstream.
Hide KVM's pt_mode module param behind CONFIG_BROKEN, i.e. disable support
for virtualizing Intel PT via guest/host mode unless BROKEN=y. There are
myriad bugs in the implementation, some of which are fatal to the guest,
and others which put the stability and health of the host at risk.
For guest fatalities, the most glaring issue is that KVM fails to ensure
tracing is disabled, and *stays* disabled prior to VM-Enter, which is
necessary as hardware disallows loading (the guest's) RTIT_CTL if tracing
is enabled (enforced via a VMX consistency check). Per the SDM:
If the logical processor is operating with Intel PT enabled (if
IA32_RTIT_CTL.TraceEn = 1) at the time of VM entry, the "load
IA32_RTIT_CTL" VM-entry control must be 0.
On the host side, KVM doesn't validate the guest CPUID configuration
provided by userspace, and even worse, uses the guest configuration to
decide what MSRs to save/load at VM-Enter and VM-Exit. E.g. configuring
guest CPUID to enumerate more address ranges than are supported in hardware
will result in KVM trying to passthrough, save, and load non-existent MSRs,
which generates a variety of WARNs, ToPA ERRORs in the host, a potential
deadlock, etc.
Fixes: f99e3daf94 ("KVM: x86: Add Intel PT virtualization work mode")
Cc: stable@vger.kernel.org
Cc: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Tested-by: Adrian Hunter <adrian.hunter@intel.com>
Message-ID: <20241101185031.1799556-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d3ddef46f22e8c3124e0df1f325bc6a18dadff39 upstream.
Always set irr_pending (to true) when updating APICv status to fix a bug
where KVM fails to set irr_pending when userspace sets APIC state and
APICv is disabled, which ultimate results in KVM failing to inject the
pending interrupt(s) that userspace stuffed into the vIRR, until another
interrupt happens to be emulated by KVM.
Only the APICv-disabled case is flawed, as KVM forces apic->irr_pending to
be true if APICv is enabled, because not all vIRR updates will be visible
to KVM.
Hit the bug with a big hammer, even though strictly speaking KVM can scan
the vIRR and set/clear irr_pending as appropriate for this specific case.
The bug was introduced by commit 755c2bf878 ("KVM: x86: lapic: don't
touch irr_pending in kvm_apic_update_apicv when inhibiting it"), which as
the shortlog suggests, deleted code that updated irr_pending.
Before that commit, kvm_apic_update_apicv() did indeed scan the vIRR, with
with the crucial difference that kvm_apic_update_apicv() did the scan even
when APICv was being *disabled*, e.g. due to an AVIC inhibition.
struct kvm_lapic *apic = vcpu->arch.apic;
if (vcpu->arch.apicv_active) {
/* irr_pending is always true when apicv is activated. */
apic->irr_pending = true;
apic->isr_count = 1;
} else {
apic->irr_pending = (apic_search_irr(apic) != -1);
apic->isr_count = count_vectors(apic->regs + APIC_ISR);
}
And _that_ bug (clearing irr_pending) was introduced by commit b26a695a1d
("kvm: lapic: Introduce APICv update helper function"), prior to which KVM
unconditionally set irr_pending to true in kvm_apic_set_state(), i.e.
assumed that the new virtual APIC state could have a pending IRQ.
Furthermore, in addition to introducing this issue, commit 755c2bf878
also papered over the underlying bug: KVM doesn't ensure CPUs and devices
see APICv as disabled prior to searching the IRR. Waiting until KVM
emulates an EOI to update irr_pending "works", but only because KVM won't
emulate EOI until after refresh_apicv_exec_ctrl(), and there are plenty of
memory barriers in between. I.e. leaving irr_pending set is basically
hacking around bad ordering.
So, effectively revert to the pre-b26a695a1d78 behavior for state restore,
even though it's sub-optimal if no IRQs are pending, in order to provide a
minimal fix, but leave behind a FIXME to document the ugliness. With luck,
the ordering issue will be fixed and the mess will be cleaned up in the
not-too-distant future.
Fixes: 755c2bf878 ("KVM: x86: lapic: don't touch irr_pending in kvm_apic_update_apicv when inhibiting it")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Reported-by: Yong He <zhuangel570@gmail.com>
Closes: https://lkml.kernel.org/r/20241023124527.1092810-1-alexyonghe%40tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241106015135.2462147-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2657b82a78f18528bef56dc1b017158490970873 upstream.
When getting the current VPID, e.g. to emulate a guest TLB flush, return
vpid01 if L2 is running but with VPID disabled, i.e. if VPID is disabled
in vmcs12. Architecturally, if VPID is disabled, then the guest and host
effectively share VPID=0. KVM emulates this behavior by using vpid01 when
running an L2 with VPID disabled (see prepare_vmcs02_early_rare()), and so
KVM must also treat vpid01 as the current VPID while L2 is active.
Unconditionally treating vpid02 as the current VPID when L2 is active
causes KVM to flush TLB entries for vpid02 instead of vpid01, which
results in TLB entries from L1 being incorrectly preserved across nested
VM-Enter to L2 (L2=>L1 isn't problematic, because the TLB flush after
nested VM-Exit flushes vpid01).
The bug manifests as failures in the vmx_apicv_test KVM-Unit-Test, as KVM
incorrectly retains TLB entries for the APIC-access page across a nested
VM-Enter.
Opportunisticaly add comments at various touchpoints to explain the
architectural requirements, and also why KVM uses vpid01 instead of vpid02.
All credit goes to Chao, who root caused the issue and identified the fix.
Link: https://lore.kernel.org/all/ZwzczkIlYGX+QXJz@intel.com
Fixes: 2b4a5a5d56 ("KVM: nVMX: Flush current VPID (L1 vs. L2) for KVM_REQ_TLB_FLUSH_GUEST")
Cc: stable@vger.kernel.org
Cc: Like Xu <like.xu.linux@gmail.com>
Debugged-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20241031202011.1580522-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8d9ffb2fe65a6c4ef114e8d4f947958a12751bbe upstream.
The kdump kernel is broken on SME systems with CONFIG_IMA_KEXEC=y enabled.
Debugging traced the issue back to
b69a2afd5a ("x86/kexec: Carry forward IMA measurement log on kexec").
Testing was previously not conducted on SME systems with CONFIG_IMA_KEXEC
enabled, which led to the oversight, with the following incarnation:
...
ima: No TPM chip found, activating TPM-bypass!
Loading compiled-in module X.509 certificates
Loaded X.509 cert 'Build time autogenerated kernel key: 18ae0bc7e79b64700122bb1d6a904b070fef2656'
ima: Allocated hash algorithm: sha256
Oops: general protection fault, probably for non-canonical address 0xcfacfdfe6660003e: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.11.0-rc2+ #14
Hardware name: Dell Inc. PowerEdge R7425/02MJ3T, BIOS 1.20.0 05/03/2023
RIP: 0010:ima_restore_measurement_list
Call Trace:
<TASK>
? show_trace_log_lvl
? show_trace_log_lvl
? ima_load_kexec_buffer
? __die_body.cold
? die_addr
? exc_general_protection
? asm_exc_general_protection
? ima_restore_measurement_list
? vprintk_emit
? ima_load_kexec_buffer
ima_load_kexec_buffer
ima_init
? __pfx_init_ima
init_ima
? __pfx_init_ima
do_one_initcall
do_initcalls
? __pfx_kernel_init
kernel_init_freeable
kernel_init
ret_from_fork
? __pfx_kernel_init
ret_from_fork_asm
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
...
Kernel panic - not syncing: Fatal exception
Kernel Offset: disabled
Rebooting in 10 seconds..
Adding debug printks showed that the stored addr and size of ima_kexec buffer
are not decrypted correctly like:
ima: ima_load_kexec_buffer, buffer:0xcfacfdfe6660003e, size:0xe48066052d5df359
Three types of setup_data info
— SETUP_EFI,
- SETUP_IMA, and
- SETUP_RNG_SEED
are passed to the kexec/kdump kernel. Only the ima_kexec buffer
experienced incorrect decryption. Debugging identified a bug in
early_memremap_is_setup_data(), where an incorrect range calculation
occurred due to the len variable in struct setup_data ended up only
representing the length of the data field, excluding the struct's size,
and thus leading to miscalculation.
Address a similar issue in memremap_is_setup_data() while at it.
[ bp: Heavily massage. ]
Fixes: b3c72fc9a7 ("x86/boot: Introduce setup_indirect")
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20240911081615.262202-3-bhe@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1db272864ff250b5e607283eaec819e1186c8e26 ]
During x86_64 kernel build with CONFIG_KMSAN, the objtool warns following:
AR built-in.a
AR vmlinux.a
LD vmlinux.o
vmlinux.o: warning: objtool: handle_bug+0x4: call to
kmsan_unpoison_entry_regs() leaves .noinstr.text section
OBJCOPY modules.builtin.modinfo
GEN modules.builtin
MODPOST Module.symvers
CC .vmlinux.export.o
Moving kmsan_unpoison_entry_regs() _after_ instrumentation_begin() fixes
the warning.
There is decode_bug(regs->ip, &imm) is left before KMSAN unpoisoining, but
it has the return condition and if we include it after
instrumentation_begin() it results the warning "return with
instrumentation enabled", hence, I'm concerned that regs will not be KMSAN
unpoisoned if `ud_type == BUG_NONE` is true.
Link: https://lkml.kernel.org/r/20241016152407.3149001-1-snovitoll@gmail.com
Fixes: ba54d194f8 ("x86/traps: avoid KMSAN bugs originating from handle_bug()")
Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 7424fc6b86c8980a87169e005f5cd4438d18efe6 ]
Currently ARM64 extracts which specific sanitizer has caused a trap via
encoded data in the trap instruction. Clang on x86 currently encodes the
same data in the UD1 instruction but x86 handle_bug() and
is_valid_bugaddr() currently only look at UD2.
Bring x86 to parity with ARM64, similar to commit 25b84002af ("arm64:
Support Clang UBSAN trap codes for better reporting"). See the llvm
links for information about the code generation.
Enable the reporting of UBSAN sanitizer details on x86 compiled with clang
when CONFIG_UBSAN_TRAP=y by analysing UD1 and retrieving the type immediate
which is encoded by the compiler after the UD1.
[ tglx: Simplified it by moving the printk() into handle_bug() ]
Signed-off-by: Gatlin Newhouse <gatlin.newhouse@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20240724000206.451425-1-gatlin.newhouse@gmail.com
Link: c5978f42ec (diff-bb68d7cd885f41cfc35843998b0f9f534adb60b415f647109e597ce448e92d9f)
Link: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/X86/X86InstrSystem.td#L27
Stable-dep-of: 1db272864ff2 ("x86/traps: move kmsan check after instrumentation_begin")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3267cb6d3a174ff83d6287dcd5b0047bbd912452 upstream.
Linear Address Masking (LAM) has a weakness related to transient
execution as described in the SLAM paper[1]. Unless Linear Address
Space Separation (LASS) is enabled this weakness may be exploitable.
Until kernel adds support for LASS[2], only allow LAM for COMPILE_TEST,
or when speculation mitigations have been disabled at compile time,
otherwise keep LAM disabled.
There are no processors in market that support LAM yet, so currently
nobody is affected by this issue.
[1] SLAM: https://download.vusec.net/papers/slam_sp24.pdf
[2] LASS: https://lore.kernel.org/lkml/20230609183632.48706-1-alexander.shishkin@linux.intel.com/
[ dhansen: update SPECULATION_MITIGATIONS -> CPU_MITIGATIONS ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/5373262886f2783f054256babdf5a98545dc986b.1706068222.git.pawan.kumar.gupta%40linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f559b2e9c5c5308850544ab59396b7d53cfc67bd upstream.
Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits
4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't
enforce 32-byte alignment of nCR3.
In the absolute worst case scenario, failure to ignore bits 4:0 can result
in an out-of-bounds read, e.g. if the target page is at the end of a
memslot, and the VMM isn't using guard pages.
Per the APM:
The CR3 register points to the base address of the page-directory-pointer
table. The page-directory-pointer table is aligned on a 32-byte boundary,
with the low 5 address bits 4:0 assumed to be 0.
And the SDM's much more explicit:
4:0 Ignored
Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow
that is broken.
Fixes: e4e517b4be ("KVM: MMU: Do not unconditionally read PDPTE from guest memory")
Reported-by: Kirk Swidowski <swidowski@google.com>
Cc: Andy Nguyen <theflow@google.com>
Cc: 3pvd <3pvd@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241009140838.1036226-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2b5648416e47933939dc310c4ea1e29404f35630 ]
The resctrl schemata file supports specifying memory bandwidth associated with
the Memory Bandwidth Allocation (MBA) feature via a percentage (this is the
default) or bandwidth in MiBps (when resctrl is mounted with the "mba_MBps"
option).
The allowed range for the bandwidth percentage is from
/sys/fs/resctrl/info/MB/min_bandwidth to 100, using a granularity of
/sys/fs/resctrl/info/MB/bandwidth_gran. The supported range for the MiBps
bandwidth is 0 to U32_MAX.
There are two issues with parsing of MiBps memory bandwidth:
* The user provided MiBps is mistakenly rounded up to the granularity
that is unique to percentage input.
* The user provided MiBps is parsed using unsigned long (thus accepting
values up to ULONG_MAX), and then assigned to u32 that could result in
overflow.
Do not round up the MiBps value and parse user provided bandwidth as the u32
it is intended to be. Use the appropriate kstrtou32() that can detect out of
range values.
Fixes: 8205a078ba ("x86/intel_rdt/mba_sc: Add schemata support")
Fixes: 6ce1560d35 ("x86/resctrl: Switch over to the resctrl mbps_val list")
Co-developed-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Martin Kletzander <nert.pinx@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e4d2102018542e3ae5e297bc6e229303abff8a0f upstream.
Robert Gill reported below #GP in 32-bit mode when dosemu software was
executing vm86() system call:
general protection fault: 0000 [#1] PREEMPT SMP
CPU: 4 PID: 4610 Comm: dosemu.bin Not tainted 6.6.21-gentoo-x86 #1
Hardware name: Dell Inc. PowerEdge 1950/0H723K, BIOS 2.7.0 10/30/2010
EIP: restore_all_switch_stack+0xbe/0xcf
EAX: 00000000 EBX: 00000000 ECX: 00000000 EDX: 00000000
ESI: 00000000 EDI: 00000000 EBP: 00000000 ESP: ff8affdc
DS: 0000 ES: 0000 FS: 0000 GS: 0033 SS: 0068 EFLAGS: 00010046
CR0: 80050033 CR2: 00c2101c CR3: 04b6d000 CR4: 000406d0
Call Trace:
show_regs+0x70/0x78
die_addr+0x29/0x70
exc_general_protection+0x13c/0x348
exc_bounds+0x98/0x98
handle_exception+0x14d/0x14d
exc_bounds+0x98/0x98
restore_all_switch_stack+0xbe/0xcf
exc_bounds+0x98/0x98
restore_all_switch_stack+0xbe/0xcf
This only happens in 32-bit mode when VERW based mitigations like MDS/RFDS
are enabled. This is because segment registers with an arbitrary user value
can result in #GP when executing VERW. Intel SDM vol. 2C documents the
following behavior for VERW instruction:
#GP(0) - If a memory operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.
CLEAR_CPU_BUFFERS macro executes VERW instruction before returning to user
space. Use %cs selector to reference VERW operand. This ensures VERW will
not #GP for an arbitrary user %ds.
[ mingo: Fixed the SOB chain. ]
Fixes: a0e2dab44d22 ("x86/entry_32: Add VERW just before userspace transition")
Reported-by: Robert Gill <rtgill82@gmail.com>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com
Cc: stable@vger.kernel.org # 5.10+
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218707
Closes: https://lore.kernel.org/all/8c77ccfd-d561-45a1-8ed5-6b75212c7a58@leemhuis.info/
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Suggested-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 48a2440d0f20c826b884e04377ccc1e4696c84e9 upstream.
CPU buffers are currently cleared after call to exc_nmi, but before
register state is restored. This may be okay for MDS mitigation but not for
RDFS. Because RDFS mitigation requires CPU buffers to be cleared when
registers don't have any sensitive data.
Move CLEAR_CPU_BUFFERS after RESTORE_ALL_NMI.
Fixes: a0e2dab44d22 ("x86/entry_32: Add VERW just before userspace transition")
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240925-fix-dosemu-vm86-v7-2-1de0daca2d42%40linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ee4d4e8d2c3bec6ee652599ab31991055a72c322 upstream.
Commit
f69759be251d ("x86/CPU/AMD: Move Zenbleed check to the Zen2 init function")
causes a bit in the DE_CFG MSR to get set erroneously after a microcode late
load.
The microcode late load path calls into amd_check_microcode() and subsequently
zen2_zenbleed_check(). Since the above commit removes the cpu_has_amd_erratum()
call from zen2_zenbleed_check(), this will cause all non-Zen2 CPUs to go
through the function and set the bit in the DE_CFG MSR.
Call into the Zenbleed fix path on Zen2 CPUs only.
[ bp: Massage commit message, use cpu_feature_enabled(). ]
Fixes: f69759be251d ("x86/CPU/AMD: Move Zenbleed check to the Zen2 init function")
Signed-off-by: John Allen <john.allen@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20240923164404.27227-1-john.allen@amd.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ffd95846c6ec6cf1f93da411ea10d504036cab42 upstream.
New processors have become pickier about the local APIC timer state
before entering low power modes. These low power modes are used (for
example) when you close your laptop lid and suspend. If you put your
laptop in a bag and it is not in this low power mode, it is likely
to get quite toasty while it quickly sucks the battery dry.
The problem boils down to some CPUs' inability to power down until the
CPU recognizes that the local APIC timer is shut down. The current
kernel code works in one-shot and periodic modes but does not work for
deadline mode. Deadline mode has been the supported and preferred mode
on Intel CPUs for over a decade and uses an MSR to drive the timer
instead of an APIC register.
Disable the TSC Deadline timer in lapic_timer_shutdown() by writing to
MSR_IA32_TSC_DEADLINE when in TSC-deadline mode. Also avoid writing
to the initial-count register (APIC_TMICT) which is ignored in
TSC-deadline mode.
Note: The APIC_LVTT|=APIC_LVT_MASKED operation should theoretically be
enough to tell the hardware that the timer will not fire in any of the
timer modes. But mitigating AMD erratum 411[1] also requires clearing
out APIC_TMICT. Solely setting APIC_LVT_MASKED is also ineffective in
practice on Intel Lunar Lake systems, which is the motivation for this
change.
1. 411 Processor May Exit Message-Triggered C1E State Without an Interrupt if Local APIC Timer Reaches Zero - https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/revision-guides/41322_10h_Rev_Gd.pdf
Fixes: 279f146143 ("x86: apic: Use tsc deadline for oneshot when available")
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Tested-by: Todd Brandt <todd.e.brandt@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20241015061522.25288-1-rui.zhang%40intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d5fd042bf4cfb557981d65628e1779a492cd8cfa upstream.
After a recent LLVM change [1] that deduces __cold on functions that only call
cold code (such as __init functions), there is a section mismatch warning from
__get_mem_config_intel(), which got moved to .text.unlikely. as a result of
that optimization:
WARNING: modpost: vmlinux: section mismatch in reference: \
__get_mem_config_intel+0x77 (section: .text.unlikely.) -> thread_throttle_mode_init (section: .init.text)
Mark __get_mem_config_intel() as __init as well since it is only called
from __init code, which clears up the warning.
While __rdt_get_mem_config_amd() does not exhibit a warning because it
does not call any __init code, it is a similar function that is only
called from __init code like __get_mem_config_intel(), so mark it __init
as well to keep the code symmetrical.
CONFIG_SECTION_MISMATCH_WARN_ONLY=n would turn this into a fatal error.
Fixes: 05b93417ce ("x86/intel_rdt/mba: Add primary support for Memory Bandwidth Allocation (MBA)")
Fixes: 4d05bf71f1 ("x86/resctrl: Introduce AMD QOS feature")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: <stable@kernel.org>
Link: 6b11573b8c [1]
Link: https://lore.kernel.org/r/20240917-x86-restctrl-get_mem_config_intel-init-v3-1-10d521256284@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c62fa117c32bd1abed9304c58e0da6940f8c7fc2 upstream.
Since X86_FEATURE_ENTRY_IBPB will invalidate all harmful predictions
with IBPB, no software-based untraining of returns is needed anymore.
Currently, this change affects retbleed and SRSO mitigations so if
either of the mitigations is doing IBPB and the other one does the
software sequence, the latter is not needed anymore.
[ bp: Massage commit message. ]
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Johannes Wikner <kwikner@ethz.ch>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0fad2878642ec46225af2054564932745ac5c765 upstream.
entry_ibpb() is designed to follow Intel's IBPB specification regardless
of CPU. This includes invalidating RSB entries.
Hence, if IBPB on VMEXIT has been selected, entry_ibpb() as part of the
RET untraining in the VMEXIT path will take care of all BTB and RSB
clearing so there's no need to explicitly fill the RSB anymore.
[ bp: Massage commit message. ]
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Johannes Wikner <kwikner@ethz.ch>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 50e4b3b94090babe8d4bb85c95f0d3e6b07ea86e upstream.
entry_ibpb() should invalidate all indirect predictions, including return
target predictions. Not all IBPB implementations do this, in which case the
fallback is RSB filling.
Prevent SRSO-style hijacks of return predictions following IBPB, as the return
target predictor can be corrupted before the IBPB completes.
[ bp: Massage. ]
Signed-off-by: Johannes Wikner <kwikner@ethz.ch>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3ea87dfa31a7b0bb0ff1675e67b9e54883013074 upstream.
Set this flag if the CPU has an IBPB implementation that does not
invalidate return target predictions. Zen generations < 4 do not flush
the RSB when executing an IBPB and this bug flag denotes that.
[ bp: Massage. ]
Signed-off-by: Johannes Wikner <kwikner@ethz.ch>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ff898623af2ed564300752bba83a680a1e4fec8d upstream.
AMD's initial implementation of IBPB did not clear the return address
predictor. Beginning with Zen4, AMD's IBPB *does* clear the return address
predictor. This behavior is enumerated by CPUID.80000008H:EBX.IBPB_RET[30].
Define X86_FEATURE_AMD_IBPB_RET for use in KVM_GET_SUPPORTED_CPUID,
when determining cross-vendor capabilities.
Suggested-by: Venkatesh Srinivas <venkateshs@chromium.org>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 59c34008d3bdeef4c8ebc0ed2426109b474334d4 ]
Add new PCI device IDs into the root IDs and miscellaneous IDs lists to
provide support for the latest generation of AMD 1Ah family 60h processor
models.
Signed-off-by: Shyam Sundar S K <Shyam-sundar.S-k@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/r/20240722092801.3480266-1-Shyam-sundar.S-k@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0e640f0a47d8426eab1fb9c03f0af898dfe810b8 ]
Add the new PCI Device IDs to the MISC IDs list to support new
generation of AMD 1Ah family 70h Models of processors.
[ bp: Massage commit message. ]
Signed-off-by: Shyam Sundar S K <Shyam-sundar.S-k@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240510111829.969501-1-Shyam-sundar.S-k@amd.com
Stable-dep-of: 59c34008d3bd ("x86/amd_nb: Add new PCI IDs for AMD family 1Ah model 60h")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c8831bdbfbab672c006a18006d36932a494b2fd6 ]
Daniel Hodges reported a jit error when playing with a sched-ext program.
The error message is:
unexpected jmp_cond padding: -4 bytes
But further investigation shows the error is actual due to failed
convergence. The following are some analysis:
...
pass4, final_proglen=4391:
...
20e: 48 85 ff test rdi,rdi
211: 74 7d je 0x290
213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
...
289: 48 85 ff test rdi,rdi
28c: 74 17 je 0x2a5
28e: e9 7f ff ff ff jmp 0x212
293: bf 03 00 00 00 mov edi,0x3
Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
and insn at 0x28e is 5-byte jmp insn with offset -129.
pass5, final_proglen=4392:
...
20e: 48 85 ff test rdi,rdi
211: 0f 84 80 00 00 00 je 0x297
217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
...
28d: 48 85 ff test rdi,rdi
290: 74 1a je 0x2ac
292: eb 84 jmp 0x218
294: bf 03 00 00 00 mov edi,0x3
Note that insn at 0x211 is 6-byte cond jump insn now since its offset
becomes 0x80 based on previous round (0x293 - 0x213 = 0x80). At the same
time, insn at 0x292 is a 2-byte insn since its offset is -124.
pass6 will repeat the same code as in pass4. pass7 will repeat the same
code as in pass5, and so on. This will prevent eventual convergence.
Passes 1-14 are with padding = 0. At pass15, padding is 1 and related
insn looks like:
211: 0f 84 80 00 00 00 je 0x297
217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
...
24d: 48 85 d2 test rdx,rdx
The similar code in pass14:
211: 74 7d je 0x290
213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
...
249: 48 85 d2 test rdx,rdx
24c: 74 21 je 0x26f
24e: 48 01 f7 add rdi,rsi
...
Before generating the following insn,
250: 74 21 je 0x273
"padding = 1" enables some checking to ensure nops is either 0 or 4
where
#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
nops = INSN_SZ_DIFF - 2
In this specific case,
addrs[i] = 0x24e // from pass14
addrs[i-1] = 0x24d // from pass15
prog - temp = 3 // from 'test rdx,rdx' in pass15
so
nops = -4
and this triggers the failure.
To fix the issue, we need to break cycles of je <-> jmp. For example,
in the above case, we have
211: 74 7d je 0x290
the offset is 0x7d. If 2-byte je insn is generated only if
the offset is less than 0x7d (<= 0x7c), the cycle can be
break and we can achieve the convergence.
I did some study on other cases like je <-> je, jmp <-> je and
jmp <-> jmp which may cause cycles. Those cases are not from actual
reproducible cases since it is pretty hard to construct a test case
for them. the results show that the offset <= 0x7b (0x7b = 123) should
be enough to cover all cases. This patch added a new helper to generate 8-bit
cond/uncond jmp insns only if the offset range is [-128, 123].
Reported-by: Daniel Hodges <hodgesd@meta.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240904221251.37109-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cfa7f3d2c526c224a6271cc78a4a27a0de06f4f0 ]
When tracing user functions with uprobe functionality, it's common to
install the probe (e.g., a BPF program) at the first instruction of the
function. This is often going to be `push %rbp` instruction in function
preamble, which means that within that function frame pointer hasn't
been established yet. This leads to consistently missing an actual
caller of the traced function, because perf_callchain_user() only
records current IP (capturing traced function) and then following frame
pointer chain (which would be caller's frame, containing the address of
caller's caller).
So when we have target_1 -> target_2 -> target_3 call chain and we are
tracing an entry to target_3, captured stack trace will report
target_1 -> target_3 call chain, which is wrong and confusing.
This patch proposes a x86-64-specific heuristic to detect `push %rbp`
(`push %ebp` on 32-bit architecture) instruction being traced. Given
entire kernel implementation of user space stack trace capturing works
under assumption that user space code was compiled with frame pointer
register (%rbp/%ebp) preservation, it seems pretty reasonable to use
this instruction as a strong indicator that this is the entry to the
function. In that case, return address is still pointed to by %rsp/%esp,
so we fetch it and add to stack trace before proceeding to unwind the
rest using frame pointer-based logic.
We also check for `endbr64` (for 64-bit modes) as another common pattern
for function entry, as suggested by Josh Poimboeuf. Even if we get this
wrong sometimes for uprobes attached not at the function entry, it's OK
because stack trace will still be overall meaningful, just with one
extra bogus entry. If we don't detect this, we end up with guaranteed to
be missing caller function entry in the stack trace, which is worse
overall.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240729175223.23914-1-andrii@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d19d638b1e6cf746263ef60b7d0dee0204d8216a ]
Modern (fortified) memcpy() prefers to avoid writing (or reading) beyond
the end of the addressed destination (or source) struct member:
In function ‘fortify_memcpy_chk’,
inlined from ‘syscall_get_arguments’ at ./arch/x86/include/asm/syscall.h:85:2,
inlined from ‘populate_seccomp_data’ at kernel/seccomp.c:258:2,
inlined from ‘__seccomp_filter’ at kernel/seccomp.c:1231:3:
./include/linux/fortify-string.h:580:25: error: call to ‘__read_overflow2_field’ declared with attribute warning: detected read beyond size of field (2nd parameter); maybe use struct_group()? [-Werror=attribute-warning]
580 | __read_overflow2_field(q_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As already done for x86_64 and compat mode, do not use memcpy() to
extract syscall arguments from struct pt_regs but rather just perform
direct assignments. Binary output differences are negligible, and actually
ends up using less stack space:
- sub $0x84,%esp
+ sub $0x6c,%esp
and less text size:
text data bss dec hex filename
10794 252 0 11046 2b26 gcc-32b/kernel/seccomp.o.stock
10714 252 0 10966 2ad6 gcc-32b/kernel/seccomp.o.after
Closes: https://lore.kernel.org/lkml/9b69fb14-df89-4677-9c82-056ea9e706f5@gmail.com/
Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Signed-off-by: Kees Cook <kees@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Link: https://lore.kernel.org/all/20240708202202.work.477-kees%40kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5760929f6545c651682de3c2c6c6786816b17bb1 ]
A kexec kernel boot failure is sometimes observed on AMD CPUs due to an
unmapped EFI config table array. This can be seen when "nogbpages" is on
the kernel command line, and has been observed as a full BIOS reboot rather
than a successful kexec.
This was also the cause of reported regressions attributed to Commit
7143c5f4cf20 ("x86/mm/ident_map: Use gbpages only where full GB page should
be mapped.") which was subsequently reverted.
To avoid this page fault, explicitly include the EFI config table array in
the kexec identity map.
Further explanation:
The following 2 commits caused the EFI config table array to be
accessed when enabling sev at kernel startup.
commit ec1c66af3a ("x86/compressed/64: Detect/setup SEV/SME features
earlier during boot")
commit c01fce9cef ("x86/compressed: Add SEV-SNP feature
detection/setup")
This is in the code that examines whether SEV should be enabled or not, so
it can even affect systems that are not SEV capable.
This may result in a page fault if the EFI config table array's address is
unmapped. Since the page fault occurs before the new kernel establishes its
own identity map and page fault routines, it is unrecoverable and kexec
fails.
Most often, this problem is not seen because the EFI config table array
gets included in the map by the luck of being placed at a memory address
close enough to other memory areas that *are* included in the map created
by kexec.
Both the "nogbpages" command line option and the "use gpbages only where
full GB page should be mapped" change greatly reduce the chance of being
included in the map by luck, which is why the problem appears.
Signed-off-by: Tao Liu <ltao@redhat.com>
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavin Joseph <me@pavinjoseph.com>
Tested-by: Sarah Brofeldt <srhb@dbc.dk>
Tested-by: Eric Hagberg <ehagberg@gmail.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/all/20240717213121.3064030-2-steve.wahl@hpe.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d10b554919d4cc8fa8fe2e95b57ad2624728c8e4 ]
A process can disable access to the alternate signal stack by not
enabling the altstack's PKEY in the PKRU register.
Nevertheless, the kernel updates the PKRU temporarily for signal
handling. However, in sigreturn(), restore_sigcontext() will restore the
PKRU to the user-defined PKRU value.
This will cause restore_altstack() to fail with a SIGSEGV as it needs read
access to the altstack which is prohibited by the user-defined PKRU value.
Fix this by restoring altstack before restoring PKRU.
Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240802061318.2140081-5-aruna.ramakrishna@oracle.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 24cf2bc982ffe02aeffb4a3885c71751a2c7023b ]
Assume there's a multithreaded application that runs untrusted user
code. Each thread has its stack/code protected by a non-zero PKEY, and the
PKRU register is set up such that only that particular non-zero PKEY is
enabled. Each thread also sets up an alternate signal stack to handle
signals, which is protected by PKEY zero. The PKEYs man page documents that
the PKRU will be reset to init_pkru when the signal handler is invoked,
which means that PKEY zero access will be enabled. But this reset happens
after the kernel attempts to push fpu state to the alternate stack, which
is not (yet) accessible by the kernel, which leads to a new SIGSEGV being
sent to the application, terminating it.
Enabling both the non-zero PKEY (for the thread) and PKEY zero in
userspace will not work for this use case. It cannot have the alt stack
writeable by all - the rationale here is that the code running in that
thread (using a non-zero PKEY) is untrusted and should not have access
to the alternate signal stack (that uses PKEY zero), to prevent the
return address of a function from being changed. The expectation is that
kernel should be able to set up the alternate signal stack and deliver
the signal to the application even if PKEY zero is explicitly disabled
by the application. The signal handler accessibility should not be
dictated by whatever PKRU value the thread sets up.
The PKRU register is managed by XSAVE, which means the sigframe contents
must match the register contents - which is not the case here. It's
required that the signal frame contains the user-defined PKRU value (so
that it is restored correctly from sigcontext) but the actual register must
be reset to init_pkru so that the alt stack is accessible and the signal
can be delivered to the application. It seems that the proper fix here
would be to remove PKRU from the XSAVE framework and manage it separately,
which is quite complicated. As a workaround, do this:
orig_pkru = rdpkru();
wrpkru(orig_pkru & init_pkru_value);
xsave_to_user_sigframe();
put_user(pkru_sigframe_addr, orig_pkru)
In preparation for writing PKRU to sigframe, pass PKRU as an additional
parameter down the call chain from get_sigframe().
No functional change.
Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240802061318.2140081-2-aruna.ramakrishna@oracle.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 830802a0fea8fb39d3dc9fb7d6b5581e1343eb1f ]
Breno observed panics when using failslab under certain conditions during
runtime:
can not alloc irq_pin_list (-1,0,20)
Kernel panic - not syncing: IO-APIC: failed to add irq-pin. Can not proceed
panic+0x4e9/0x590
mp_irqdomain_alloc+0x9ab/0xa80
irq_domain_alloc_irqs_locked+0x25d/0x8d0
__irq_domain_alloc_irqs+0x80/0x110
mp_map_pin_to_irq+0x645/0x890
acpi_register_gsi_ioapic+0xe6/0x150
hpet_open+0x313/0x480
That's a pointless panic which is a leftover of the historic IO/APIC code
which panic'ed during early boot when the interrupt allocation failed.
The only place which might justify panic is the PIT/HPET timer_check() code
which tries to figure out whether the timer interrupt is delivered through
the IO/APIC. But that code does not require to handle interrupt allocation
failures. If the interrupt cannot be allocated then timer delivery fails
and it either panics due to that or falls back to legacy mode.
Cure this by removing the panic wrapper around __add_pin_to_irq_node() and
making mp_irqdomain_alloc() aware of the failure condition and handle it as
any other failure in this function gracefully.
Reported-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Breno Leitao <leitao@debian.org>
Tested-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Link: https://lore.kernel.org/all/ZqfJmUF8sXIyuSHN@gmail.com
Link: https://lore.kernel.org/all/20240802155440.275200843@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3363c460ef726ba693704dbcd73b7e7214ccc788 ]
The macros FOUR_ROUNDS_AND_SCHED and DO_4ROUNDS rely on an
unexpected/undocumented behavior of the GNU assembler, which might
change in the future
(https://sourceware.org/bugzilla/show_bug.cgi?id=32073).
M (1) (2) // 1 arg !? Future: 2 args
M 1 + 2 // 1 arg !? Future: 3 args
M 1 2 // 2 args
Add parentheses around the single arguments to support future GNU
assembler and LLVM integrated assembler (when the IsOperator hack from
the following link is dropped).
Link: 055006475e
Signed-off-by: Fangrui Song <maskray@google.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d4fc4d01471528da8a9797a065982e05090e1d81 upstream.
TDX only supports kernel-initiated MMIO operations. The handle_mmio()
function checks if the #VE exception occurred in the kernel and rejects
the operation if it did not.
However, userspace can deceive the kernel into performing MMIO on its
behalf. For example, if userspace can point a syscall to an MMIO address,
syscall does get_user() or put_user() on it, triggering MMIO #VE. The
kernel will treat the #VE as in-kernel MMIO.
Ensure that the target MMIO address is within the kernel before decoding
instruction.
Fixes: 31d58c4e55 ("x86/tdx: Handle in-kernel MMIO")
Signed-off-by: Alexey Gladkov (Intel) <legion@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/565a804b80387970460a4ebc67c88d1380f61ad1.1726237595.git.legion%40kernel.org
Signed-off-by: Alexey Gladkov (Intel) <legion@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 477d81a1c47a1b79b9c08fc92b5dea3c5143800b ]
common_interrupt() and related variants call kvm_set_cpu_l1tf_flush_l1d(),
which is neither marked noinstr nor __always_inline.
So compiler puts it out of line and adds instrumentation to it. Since the
call is inside of instrumentation_begin/end(), objtool does not warn about
it.
The manifestation is that KCOV produces spurious coverage in
kvm_set_cpu_l1tf_flush_l1d() in random places because the call happens when
preempt count is not yet updated to say that the kernel is in an interrupt.
Mark kvm_set_cpu_l1tf_flush_l1d() as __always_inline and move it out of the
instrumentation_begin/end() section. It only calls __this_cpu_write()
which is already safe to call in noinstr contexts.
Fixes: 6368558c37 ("x86/entry: Provide IDTENTRY_SYSVEC")
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/3f9a1de9e415fcb53d07dc9e19fa8481bb021b1b.1718092070.git.dvyukov@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 90f357208200a941e90e75757123326684d715d0 ]
FRED and IDT can share most of the definitions and declarations so
that in the majority of cases the actual handler implementation is the
same.
The differences are the exceptions where FRED stores exception related
information on the stack and the sysvec implementations as FRED can
handle irqentry/exit() in the dispatcher instead of having it in each
handler.
Also add stub defines for vectors which are not used due to Kconfig
decisions to spare the ifdeffery in the actual FRED dispatch code.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-23-xin3.li@intel.com
Stable-dep-of: 477d81a1c47a ("x86/entry: Remove unwanted instrumentation in common_interrupt()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d92792a4b26e50b96ab734cbe203d8a4c932a7a9 upstream.
pt_event_snapshot_aux() uses pt->handle_nmi to determine if tracing
needs to be stopped, however tracing can still be going because
pt->handle_nmi is set to zero before tracing is stopped in pt_event_stop,
whereas pt_event_snapshot_aux() requires that tracing must be stopped in
order to copy a sample of trace from the buffer.
Instead call pt_config_stop() always, which anyway checks config for
RTIT_CTL_TRACEEN and does nothing if it is already clear.
Note pt_event_snapshot_aux() can continue to use pt->handle_nmi to
determine if the trace needs to be restarted afterwards.
Fixes: 25e8920b30 ("perf/x86/intel/pt: Add sampling support")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20240715160712.127117-2-adrian.hunter@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d33234342f8b468e719e05649fd26549fb37ef8a upstream.
Hoist kvm_x2apic_icr_write() above kvm_apic_write_nodecode() so that a
local helper to _read_ the x2APIC ICR can be added and used in the
nodecode path without needing a forward declaration.
No functional change intended.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240719235107.3023592-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 71bf395a276f0578d19e0ae137a7d1d816d08e0e upstream.
Inject a #GP on a WRMSR(ICR) that attempts to set any reserved bits that
are must-be-zero on both Intel and AMD, i.e. any reserved bits other than
the BUSY bit, which Intel ignores and basically says is undefined.
KVM's xapic_state_test selftest has been fudging the bug since commit
4b88b1a518 ("KVM: selftests: Enhance handling WRMSR ICR register in
x2APIC mode"), which essentially removed the testcase instead of fixing
the bug.
WARN if the nodecode path triggers a #GP, as the CPU is supposed to check
reserved bits for ICR when it's partially virtualized.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240719235107.3023592-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9221222c717dbddac1e3c49906525475d87a3a44 upstream.
When running as a Xen PV dom0 the system needs to map ACPI data of the
host using host physical addresses, while those addresses can conflict
with the guest physical addresses of the loaded linux kernel. The same
problem might apply in case a PV guest is configured to use the host
memory map.
This conflict can be solved by mapping the ACPI data to a different
guest physical address, but mapping the data via acpi_os_ioremap()
must still be possible using the host physical address, as this
address might be generated by AML when referencing some of the ACPI
data.
When configured to support running as a Xen PV domain, have an
implementation of acpi_os_ioremap() being aware of the possibility to
need above mentioned translation of a host physical address to the
guest physical address.
This modification requires to #include linux/acpi.h in some sources
which need to include asm/acpi.h directly.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c4498ae316da5b5786ccd448fc555f3339b8e4ca upstream.
Move the checks for e820 memory map conflicts using the
xen_chk_is_e820_usable() helper further up in order to prepare
resolving some of the possible conflicts by doing some e820 map
modifications, which must happen before evaluating the RAM layout.
Signed-off-by: Juergen Gross <jgross@suse.com>
Tested-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit dbc3171194403d0d40e4bdeae666f6e76e428b53 ]
If pcie_find_root_port() is unable to locate a Root Port, it will return
NULL. Check the pointer for NULL before dereferencing it.
This particular case is in a quirk for devices that are always below a Root
Port, so this won't avoid a problem and doesn't need to be backported, but
check as a matter of style and to prevent copy/paste mistakes.
Link: https://lore.kernel.org/r/20240812202659.1649121-1-samasth.norway.ananda@oracle.com
Signed-off-by: Samasth Norway Ananda <samasth.norway.ananda@oracle.com>
[bhelgaas: drop Fixes: and explain why there's no problem in this case]
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit be35d91c8880650404f3bf813573222dfb106935 ]
In order to minimize required special handling for running as Xen PV
dom0, the memory layout is modified to match that of the host. This
requires to have only RAM at the locations where Xen allocated memory
is living. Unfortunately there seem to be some machines, where ACPI
NVS is located at 64 MB, resulting in a conflict with the loaded
kernel or the initial page tables built by Xen.
Avoid this conflict by swapping the ACPI NVS area in the memory map
with unused RAM. This is possible via modification of the dom0 P2M map.
Accesses to the ACPI NVS area are done either for saving and restoring
it across suspend operations (this will work the same way as before),
or by ACPI code when NVS memory is referenced from other ACPI tables.
The latter case is handled by a Xen specific indirection of
acpi_os_ioremap().
While the E820 map can (and should) be modified right away, the P2M
map can be updated only after memory allocation is working, as the P2M
map might need to be extended.
Fixes: 808fdb7193 ("xen: check for kernel memory conflicting with memory layout")
Signed-off-by: Juergen Gross <jgross@suse.com>
Tested-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d05208cf7f05420ad10cc7f9550f91d485523659 ]
When running as a Xen PV dom0 it can happen that the kernel is being
loaded to a guest physical address conflicting with the host memory
map.
In order to be able to resolve this conflict, add the capability to
remap non-RAM areas to different guest PFNs. A function to use this
remapping information for other purposes than doing the remap will be
added when needed.
As the number of conflicts should be rather low (currently only
machines with max. 1 conflict are known), save the remap data in a
small statically allocated array.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Stable-dep-of: be35d91c8880 ("xen: tolerate ACPI NVS memory overlapping with Xen allocated memory")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 43dc2a0f479b9cd30f6674986d7a40517e999d31 ]
Instead of having max_pfn as a local variable of xen_memory_setup(),
make it a static variable in setup.c instead. This avoids having to
pass it to subfunctions, which will be needed in more cases in future.
Rename it to ini_nr_pages, as the value denotes the currently usable
number of memory pages as passed from the hypervisor at boot time.
Signed-off-by: Juergen Gross <jgross@suse.com>
Tested-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Stable-dep-of: be35d91c8880 ("xen: tolerate ACPI NVS memory overlapping with Xen allocated memory")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ba88829706e2c5b7238638fc2b0713edf596495e ]
When booting as a Xen PV dom0 the memory layout of the dom0 is
modified to match that of the host, as this requires less changes in
the kernel for supporting Xen.
There are some cases, though, which are problematic, as it is the Xen
hypervisor selecting the kernel's load address plus some other data,
which might conflict with the host's memory map.
These conflicts are detected at boot time and result in a boot error.
In order to support handling at least some of these conflicts in
future, introduce a generic helper function which will later gain the
ability to adapt the memory layout when possible.
Add the missing check for the xen_start_info area.
Note that possible p2m map and initrd memory conflicts are handled
already by copying the data to memory areas not conflicting with the
memory map. The initial stack allocated by Xen doesn't need to be
checked, as early boot code is switching to the statically allocated
initial kernel stack. Initial page tables and the kernel itself will
be handled later.
Signed-off-by: Juergen Gross <jgross@suse.com>
Tested-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Stable-dep-of: be35d91c8880 ("xen: tolerate ACPI NVS memory overlapping with Xen allocated memory")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e8432ac802a028eaee6b1e86383d7cd8e9fb8431 ]
We have some very fancy min/max macros that have tons of sanity checking
to warn about mixed signedness etc.
This is all things that a sane compiler should warn about, but there are
no sane compiler interfaces for this, and '-Wsign-compare' is broken [1]
and not useful.
So then we compensate (some would say over-compensate) by doing the
checks manually with some truly horrid macro games.
And no, we can't just use __builtin_types_compatible_p(), because the
whole question of "does it make sense to compare these two values" is a
lot more complicated than that.
For example, it makes a ton of sense to compare unsigned values with
simple constants like "5", even if that is indeed a signed type. So we
have these very strange macros to try to make sensible type checking
decisions on the arguments to 'min()' and 'max()'.
But that can cause enormous code expansion if the min()/max() macros are
used with complicated expressions, and particularly if you nest these
things so that you get the first big expansion then expanded again.
The xen setup.c file ended up ballooning to over 50MB of preprocessed
noise that takes 15s to compile (obviously depending on the build host),
largely due to one single line.
So let's split that one single line to just be simpler. I think it ends
up being more legible to humans too at the same time. Now that single
file compiles in under a second.
Reported-and-reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Link: https://lore.kernel.org/all/c83c17bb-be75-4c67-979d-54eee38774c6@lucifer.local/
Link: https://staticthinking.wordpress.com/2023/07/25/wsign-compare-is-garbage/ [1]
Cc: David Laight <David.Laight@aculab.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stable-dep-of: be35d91c8880 ("xen: tolerate ACPI NVS memory overlapping with Xen allocated memory")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fac1bceeeb04886fc2ee952672e6e6c85ce41dca ]
When running as a Xen PV dom0 the kernel is loaded by the hypervisor
using a different memory map than that of the host. In order to
minimize the required changes in the kernel, the kernel adapts its
memory map to that of the host. In order to do that it is checking
for conflicts of its load address with the host memory map.
Unfortunately the tested memory range does not include the .brk
area, which might result in crashes or memory corruption when this
area does conflict with the memory map of the host.
Fix the test by using the _end label instead of __bss_stop.
Fixes: 808fdb7193 ("xen: check for kernel memory conflicting with memory layout")
Signed-off-by: Juergen Gross <jgross@suse.com>
Tested-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3b299b99556c1753923f8d9bbd9304bcd139282f ]
LAM can only be enabled when a process is single-threaded. But _kernel_
threads can temporarily use a single-threaded process's mm.
If LAM is enabled by a userspace process while a kthread is using its
mm, the kthread will not observe LAM enablement (i.e. LAM will be
disabled in CR3). This could be fine for the kthread itself, as LAM only
affects userspace addresses. However, if the kthread context switches to
a thread in the same userspace process, CR3 may or may not be updated
because the mm_struct doesn't change (based on pending TLB flushes). If
CR3 is not updated, the userspace thread will run incorrectly with LAM
disabled, which may cause page faults when using tagged addresses.
Example scenario:
CPU 1 CPU 2
/* kthread */
kthread_use_mm()
/* user thread */
prctl_enable_tagged_addr()
/* LAM enabled on CPU 2 */
/* LAM disabled on CPU 1 */
context_switch() /* to CPU 1 */
/* Switching to user thread */
switch_mm_irqs_off()
/* CR3 not updated */
/* LAM is still disabled on CPU 1 */
Synchronize LAM enablement by sending an IPI to all CPUs running with
the mm_struct to enable LAM. This makes sure LAM is enabled on CPU 1
in the above scenario before prctl_enable_tagged_addr() returns and
userspace starts using tagged addresses, and before it's possible to
run the userspace process on CPU 1.
In switch_mm_irqs_off(), move reading the LAM mask until after
mm_cpumask() is updated. This ensures that if an outdated LAM mask is
written to CR3, an IPI is received to update it right after IRQs are
re-enabled.
[ dhansen: Add a LAM enabling helper and comment it ]
Fixes: 82721d8b25 ("x86/mm: Handle LAM on context switch")
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/all/20240702132139.3332013-2-yosryahmed%40google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9c936844010466535bd46ea4ce4656ef17653644 ]
When the current node doesn't have an EPC section configured by firmware
and all other EPC sections are used up, CPU can get stuck inside the
while loop that looks for an available EPC page from remote nodes
indefinitely, leading to a soft lockup. Note how nid_of_current will
never be equal to nid in that while loop because nid_of_current is not
set in sgx_numa_mask.
Also worth mentioning is that it's perfectly fine for the firmware not
to setup an EPC section on a node. While setting up an EPC section on
each node can enhance performance, it is not a requirement for
functionality.
Rework the loop to start and end on *a* node that has SGX memory. This
avoids the deadlock looking for the current SGX-lacking node to show up
in the loop when it never will.
Fixes: 901ddbb9ec ("x86/sgx: Add a basic NUMA allocation scheme to sgx_alloc_epc_page()")
Reported-by: "Molina Sabido, Gerardo" <gerardo.molina.sabido@intel.com>
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Zhimin Luo <zhimin.luo@intel.com>
Link: https://lore.kernel.org/all/20240905080855.1699814-2-aaron.lu%40intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 2eda374e883ad297bd9fe575a16c1dc850346075 upstream.
New CPU #defines encode vendor and family as well as model.
[ dhansen: vertically align 0's in invlpg_miss_ids[] ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181518.41946-1-tony.luck%40intel.com
[ Ricardo: I used the old match macro X86_MATCH_INTEL_FAM6_MODEL()
instead of X86_MATCH_VFM() as in the upstream commit. ]
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8fcc514809de41153b43ccbe1a0cdf7f72b78e7e ]
A Linux guest on Hyper-V gets the TSC frequency from a synthetic MSR, if
available. In this case, set X86_FEATURE_TSC_KNOWN_FREQ so that Linux
doesn't unnecessarily do refined TSC calibration when setting up the TSC
clocksource.
With this change, a message such as this is no longer output during boot
when the TSC is used as the clocksource:
[ 1.115141] tsc: Refined TSC clocksource calibration: 2918.408 MHz
Furthermore, the guest and host will have exactly the same view of the
TSC frequency, which is important for features such as the TSC deadline
timer that are emulated by the Hyper-V host.
Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Roman Kisel <romank@linux.microsoft.com>
Link: https://lore.kernel.org/r/20240606025559.1631-1-mhklinux@outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240606025559.1631-1-mhklinux@outlook.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit b9af6418279c4cf73ca073f8ea024992b38be8ab upstream.
commit 9636be85cc ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when
CPUs go online/offline") introduces a new cpuhp state for hyperv
initialization.
cpuhp_setup_state() returns the state number if state is
CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN and 0 for all other states.
For the hyperv case, since a new cpuhp state was introduced it would
return 0. However, in hv_machine_shutdown(), the cpuhp_remove_state() call
is conditioned upon "hyperv_init_cpuhp > 0". This will never be true and
so hv_cpu_die() won't be called on all CPUs. This means the VP assist page
won't be reset. When the kexec kernel tries to setup the VP assist page
again, the hypervisor corrupts the memory region of the old VP assist page
causing a panic in case the kexec kernel is using that memory elsewhere.
This was originally fixed in commit dfe94d4086 ("x86/hyperv: Fix kexec
panic/hang issues").
Get rid of hyperv_init_cpuhp entirely since we are no longer using a
dynamic cpuhp state and use CPUHP_AP_HYPERV_ONLINE directly with
cpuhp_remove_state().
Cc: stable@vger.kernel.org
Fixes: 9636be85cc ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when CPUs go online/offline")
Signed-off-by: Anirudh Rayabharam (Microsoft) <anirudh@anirudhrb.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Link: https://lore.kernel.org/r/20240828112158.3538342-1-anirudh@anirudhrb.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240828112158.3538342-1-anirudh@anirudhrb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>