Pull RCU updates from Paul E. McKenney:
- An optimization and a fix for RCU expedited grace periods, with
the fix being from Boqun Feng.
- Miscellaneous fixes, including a lockdep-annotation fix from
Boqun Feng.
- SRCU updates.
- Updates to rcutorture and associated scripting.
- Introduce grace-period sequence numbers to the RCU-bh, RCU-preempt,
and RCU-sched flavors, replacing the old ->gpnum and ->completed
pair of fields. This change allows lockless code to obtain the
complete grace-period state with a single READ_ONCE(), which is
needed to maintain tolerable lock contention during the upcoming
consolidation of the three RCU flavors. Note that grace-period
sequence numbers are already used by rcu_barrier(), expedited
RCU grace periods, and SRCU, and are thus already heavily used
and well-tested. Joel Fernandes contributed a number of excellent
fixes and improvements.
- Clean up some grace-period-reporting loose ends, including
improving the handling of quiescent states from offline CPUs
and fixing some false-positive WARN_ON_ONCE() invocations.
(Strictly speaking, the WARN_ON_ONCE() invocations were quite
correct, but their invariants were (harmlessly) violated by the
earlier sloppy handling of quiescent states from offline CPUs.)
In addition, improve grace-period forward-progress guarantees so
as to allow removal of fail-safe checks that required otherwise
needless lock acquisitions. Finally, add more diagnostics to
help debug the upcoming consolidation of the RCU-bh, RCU-preempt,
and RCU-sched flavors.
- Additional miscellaneous fixes, including those contributed by
Byungchul Park, Mauro Carvalho Chehab, Joe Perches, Joel Fernandes,
Steven Rostedt, Andrea Parri, and Neil Brown.
- Additional torture-test changes, including several contributed by
Arnd Bergmann and Joel Fernandes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both the init_module and finit_module syscalls call either directly
or indirectly the security_kernel_read_file LSM hook. This patch
replaces the direct call in init_module with a call to the new
security_kernel_load_data hook and makes the corresponding changes
in SELinux, LoadPin, and IMA.
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Casey Schaufler <casey@schaufler-ca.com>
Cc: Kees Cook <keescook@chromium.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: James Morris <james.morris@microsoft.com>
In order for LSMs and IMA-appraisal to differentiate between kexec_load
and kexec_file_load syscalls, both the original and new syscalls must
call an LSM hook. This patch adds a call to security_kernel_load_data()
in the original kexec_load syscall.
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: James Morris <james.morris@microsoft.com>
Support for immediate flag was removed by commit d0807da78e
("livepatch: Remove immediate feature"). We bail out during
patch registration for architectures, those don't support
reliable stack trace. Remove the check in klp_try_switch_task(),
as its not required.
Signed-off-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Some of the comments in the perf events code use articles incorrectly,
using 'a' for words beginning with a vowel sound, where 'an' should be
used.
Signed-off-by: Tobias Tefke <tobias.tefke@tutanota.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: alexander.shishkin@linux.intel.com
Cc: jolsa@redhat.com
Cc: namhyung@kernel.org
Link: http://lkml.kernel.org/r/20180709105715.22938-1-tobias.tefke@tutanota.com
[ Fix a few more perf related 'a event' typo fixes from all around the kernel and tooling tree. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
get_cpu() disables preemption for the entire sched_fork() function.
This get_cpu() was introduced in commit:
dd41f596cd ("sched: cfs core code")
... which also invoked sched_balance_self() and this function
required preemption do be off.
Today, sched_balance_self() seems to be moved to ->task_fork callback
which is invoked while the ->pi_lock is held.
set_load_weight() could invoke reweight_task() which then via $callchain
might end up in smp_processor_id() but since `update_load' is false
this won't happen.
I didn't find any this_cpu*() or similar usage during the initialisation
of the task_struct.
The `cpu' value (from get_cpu()) is only used later in __set_task_cpu()
while the ->pi_lock lock is held.
Based on this it is possible to remove get_cpu() and use
smp_processor_id() for the `cpu' variable without breaking anything.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180706130615.g2ex2kmfu5kcvlq6@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The time spent executing IRQ handlers can be significant but it is not reflected
in the utilization of CPU when deciding to choose an OPP. Now that we have
access to this metric, schedutil can take it into account when selecting
the OPP for a CPU.
RQS utilization don't see the time spend under interrupt context and report
their value in the normal context time window. We need to compensate this when
adding interrupt utilization
The CPU utilization is:
IRQ util_avg + (1 - IRQ util_avg / max capacity ) * /Sum rq util_avg
A test with iperf on hikey (octo arm64) gives the following speedup:
iperf -c server_address -r -t 5
w/o patch w/ patch
Tx 276 Mbits/sec 304 Mbits/sec +10%
Rx 299 Mbits/sec 328 Mbits/sec +9%
8 iterations
stdev is lower than 1%
Only WFI idle state is enabled (shallowest idle state).
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1530200714-4504-8-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
interrupt and steal time are the only remaining activities tracked by
rt_avg. Like for sched classes, we can use PELT to track their average
utilization of the CPU. But unlike sched class, we don't track when
entering/leaving interrupt; Instead, we take into account the time spent
under interrupt context when we update rqs' clock (rq_clock_task).
This also means that we have to decay the normal context time and account
for interrupt time during the update.
That's also important to note that because:
rq_clock == rq_clock_task + interrupt time
and rq_clock_task is used by a sched class to compute its utilization, the
util_avg of a sched class only reflects the utilization of the time spent
in normal context and not of the whole time of the CPU. The utilization of
interrupt gives an more accurate level of utilization of CPU.
The CPU utilization is:
avg_irq + (1 - avg_irq / max capacity) * /Sum avg_rq
Most of the time, avg_irq is small and neglictible so the use of the
approximation CPU utilization = /Sum avg_rq was enough.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add both CFS and RT utilization when selecting an OPP for CFS tasks as RT
can preempt and steal CFS's running time.
RT util_avg is used to take into account the utilization of RT tasks
on the CPU when selecting OPP. If a RT task migrate, the RT utilization
will not migrate but will decay over time. On an overloaded CPU, CFS
utilization reflects the remaining utilization avialable on CPU. When RT
task migrates, the CFS utilization will increase when tasks will start to
use the newly available capacity. At the same pace, RT utilization will
decay and both variations will compensate each other to keep unchanged
overall utilization and will prevent any OPP drop.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Link: http://lkml.kernel.org/r/1530200714-4504-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a new task wakes-up for the first time, its initial utilization
is set to half of the spare capacity of its CPU. The current
implementation of post_init_entity_util_avg() uses SCHED_CAPACITY_SCALE
directly as a capacity reference. As a result, on a big.LITTLE system, a
new task waking up on an idle little CPU will be given ~512 of util_avg,
even if the CPU's capacity is significantly less than that.
Fix this by computing the spare capacity with arch_scale_cpu_capacity().
Signed-off-by: Quentin Perret <quentin.perret@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: morten.rasmussen@arm.com
Cc: patrick.bellasi@arm.com
Link: http://lkml.kernel.org/r/20180612112215.25448-1-quentin.perret@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When scheduling is delayed for longer than the softlockup interrupt
period it is possible to double-queue the cpu_stop_work, causing list
corruption.
Cure this by adding a completion to track the cpu_stop_work's
progress.
Reported-by: kernel test robot <lkp@intel.com>
Tested-by: Rong Chen <rong.a.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9cf57731b6 ("watchdog/softlockup: Replace "watchdog/%u" threads with cpu_stop_work")
Link: http://lkml.kernel.org/r/20180713104208.GW2494@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mark noticed that syzkaller is able to reliably trigger the following warning:
dl_rq->running_bw > dl_rq->this_bw
WARNING: CPU: 1 PID: 153 at kernel/sched/deadline.c:124 switched_from_dl+0x454/0x608
Kernel panic - not syncing: panic_on_warn set ...
CPU: 1 PID: 153 Comm: syz-executor253 Not tainted 4.18.0-rc3+ #29
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x458
show_stack+0x20/0x30
dump_stack+0x180/0x250
panic+0x2dc/0x4ec
__warn_printk+0x0/0x150
report_bug+0x228/0x2d8
bug_handler+0xa0/0x1a0
brk_handler+0x2f0/0x568
do_debug_exception+0x1bc/0x5d0
el1_dbg+0x18/0x78
switched_from_dl+0x454/0x608
__sched_setscheduler+0x8cc/0x2018
sys_sched_setattr+0x340/0x758
el0_svc_naked+0x30/0x34
syzkaller reproducer runs a bunch of threads that constantly switch
between DEADLINE and NORMAL classes while interacting through futexes.
The splat above is caused by the fact that if a DEADLINE task is setattr
back to NORMAL while in non_contending state (blocked on a futex -
inactive timer armed), its contribution to running_bw is not removed
before sub_rq_bw() gets called (!task_on_rq_queued() branch) and the
latter sees running_bw > this_bw.
Fix it by removing a task contribution from running_bw if the task is
not queued and in non_contending state while switched to a different
class.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Reviewed-by: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20180711072948.27061-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When cpu_stop_queue_two_works() begins to wake the stopper threads, it does
so without preemption disabled, which leads to the following race
condition:
The source CPU calls cpu_stop_queue_two_works(), with cpu1 as the source
CPU, and cpu2 as the destination CPU. When adding the stopper threads to
the wake queue used in this function, the source CPU stopper thread is
added first, and the destination CPU stopper thread is added last.
When wake_up_q() is invoked to wake the stopper threads, the threads are
woken up in the order that they are queued in, so the source CPU's stopper
thread is woken up first, and it preempts the thread running on the source
CPU.
The stopper thread will then execute on the source CPU, disable preemption,
and begin executing multi_cpu_stop(), and wait for an ack from the
destination CPU's stopper thread, with preemption still disabled. Since the
worker thread that woke up the stopper thread on the source CPU is affine
to the source CPU, and preemption is disabled on the source CPU, that
thread will never run to dequeue the destination CPU's stopper thread from
the wake queue, and thus, the destination CPU's stopper thread will never
run, causing the source CPU's stopper thread to wait forever, and stall.
Disable preemption when waking the stopper threads in
cpu_stop_queue_two_works().
Fixes: 0b26351b91 ("stop_machine, sched: Fix migrate_swap() vs. active_balance() deadlock")
Co-Developed-by: Prasad Sodagudi <psodagud@codeaurora.org>
Signed-off-by: Prasad Sodagudi <psodagud@codeaurora.org>
Co-Developed-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Isaac J. Manjarres <isaacm@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Cc: matt@codeblueprint.co.uk
Cc: bigeasy@linutronix.de
Cc: gregkh@linuxfoundation.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1530655334-4601-1-git-send-email-isaacm@codeaurora.org
Pull timer fixes from Ingo Molnar:
"A clocksource driver fix and a revert"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource: arm_arch_timer: Set arch_mem_timer cpumask to cpu_possible_mask
Revert "tick: Prefer a lower rating device only if it's CPU local device"
Pull rseq fixes from Ingo Molnar:
"Various rseq ABI fixes and cleanups: use get_user()/put_user(),
validate parameters and use proper uapi types, etc"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rseq/selftests: cleanup: Update comment above rseq_prepare_unload
rseq: Remove unused types_32_64.h uapi header
rseq: uapi: Declare rseq_cs field as union, update includes
rseq: uapi: Update uapi comments
rseq: Use get_user/put_user rather than __get_user/__put_user
rseq: Use __u64 for rseq_cs fields, validate user inputs
own patch internally for. I took it back in 4.13. Now he realizes that
he had a mistake, and swapped the values from what Android had. This
means that the old Android tools will break when using a new kernel
that has the new feature on it.
The options are:
1. To swap it back to what Android wants.
2. Add a command line option or something to do the swap
3. Just let Android carry a patch that swaps it back
Since it requires setting a tracing option to enable this anyway,
I doubt there are other users of this than Android. Thus, I've
decided to take option 1. If someone else is actually depending on the
order that is in the kernel, then we will have to revert this change
and go to option 2 or 3.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCW0ib3BQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qpH2APwJb1C72w6/QF9QK8I7HWzK3BN+9KuK
xfJA+58HXzu7SgD+IXzhXW9tODU+sWbYr9cVOyj2ad6p8CYNDkPlVAJulwM=
=XJE5
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.18-rc3-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixlet from Steven Rostedt:
"Joel Fernandes asked to add a feature in tracing that Android had its
own patch internally for. I took it back in 4.13. Now he realizes that
he had a mistake, and swapped the values from what Android had. This
means that the old Android tools will break when using a new kernel
that has the new feature on it.
The options are:
1. To swap it back to what Android wants.
2. Add a command line option or something to do the swap
3. Just let Android carry a patch that swaps it back
Since it requires setting a tracing option to enable this anyway, I
doubt there are other users of this than Android. Thus, I've decided
to take option 1. If someone else is actually depending on the order
that is in the kernel, then we will have to revert this change and go
to option 2 or 3"
* tag 'trace-v4.18-rc3-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Reorder display of TGID to be after PID
The CPU_SMT_NOT_SUPPORTED state is set (if the processor does not support
SMT) when the sysfs SMT control file is initialized.
That was fine so far as this was only required to make the output of the
control file correct and to prevent writes in that case.
With the upcoming l1tf command line parameter, this needs to be set up
before the L1TF mitigation selection and command line parsing happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.121795971@linutronix.de
The L1TF mitigation will gain a commend line parameter which allows to set
a combination of hypervisor mitigation and SMT control.
Expose cpu_smt_disable() so the command line parser can tweak SMT settings.
[ tglx: Split out of larger patch and made it preserve an already existing
force off state ]
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.039715135@linutronix.de
Currently ftrace displays data in trace output like so:
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / delay
TASK-PID CPU TGID |||| TIMESTAMP FUNCTION
| | | | |||| | |
bash-1091 [000] ( 1091) d..2 28.313544: sched_switch:
However Android's trace visualization tools expect a slightly different
format due to an out-of-tree patch patch that was been carried for a
decade, notice that the TGID and CPU fields are reversed:
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / delay
TASK-PID TGID CPU |||| TIMESTAMP FUNCTION
| | | | |||| | |
bash-1091 ( 1091) [002] d..2 64.965177: sched_switch:
From kernel v4.13 onwards, during which TGID was introduced, tracing
with systrace on all Android kernels will break (most Android kernels
have been on 4.9 with Android patches, so this issues hasn't been seen
yet). From v4.13 onwards things will break.
The chrome browser's tracing tools also embed the systrace viewer which
uses the legacy TGID format and updates to that are known to be
difficult to make.
Considering this, I suggest we make this change to the upstream kernel
and backport it to all Android kernels. I believe this feature is merged
recently enough into the upstream kernel that it shouldn't be a problem.
Also logically, IMO it makes more sense to group the TGID with the
TASK-PID and the CPU after these.
Link: http://lkml.kernel.org/r/20180626000822.113931-1-joel@joelfernandes.org
Cc: jreck@google.com
Cc: tkjos@google.com
Cc: stable@vger.kernel.org
Fixes: 441dae8f2f ("tracing: Add support for display of tgid in trace output")
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The rcutorture test module currently increments both successes and error
for the barrier test upon error, which results in misleading statistics
being printed. This commit therefore changes the code to increment the
success counter only when the test actually passes.
This change was tested by by returning from the barrier callback without
incrementing the callback counter, thus introducing what appeared to
rcutorture to be rcu_barrier() failures.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When rcutorture is built in to the kernel, an earlier patch detects
that and raises the priority of RCU's kthreads to allow rcutorture's
RCU priority boosting tests to succeed.
However, if rcutorture is built as a module, those priorities must be
raised manually via the rcutree.kthread_prio kernel boot parameter.
If this manual step is not taken, rcutorture's RCU priority boosting
tests will fail due to kthread starvation. One approach would be to
raise the default priority, but that risks breaking existing users.
Another approach would be to allow runtime adjustment of RCU's kthread
priorities, but that introduces numerous "interesting" race conditions.
This patch therefore instead detects too-low priorities, and prints a
message and disables the RCU priority boosting tests in that case.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The get_seconds() call is deprecated because it overflows on 32-bit
architectures. The algorithm in rcu_torture_stall() can deal with
the overflow, but another problem here is that using a CLOCK_REALTIME
stamp can lead to a false-positive stall warning when a settimeofday()
happens concurrently.
Using ktime_get_seconds() instead avoids those issues and will never
overflow. The added cast to 'unsigned long' however is necessary to
make ULONG_CMP_LT() work correctly.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, with RCU_BOOST disabled, I get no failures when forcing
rcutorture to test RCU boost priority inversion. The reason seems to be
that we don't check for failures if the callback never ran at all for
the duration of the boost-test loop.
Further, the 'rtb' and 'rtbf' counters seem to be used inconsistently.
'rtb' is incremented at the start of each test and 'rtbf' is incremented
per-cpu on each failure of call_rcu. So its possible 'rtbf' > 'rtb'.
To test the boost with rcutorture, I did following on a 4-CPU x86 machine:
modprobe rcutorture test_boost=2
sleep 20
rmmod rcutorture
With patch:
rtbf: 8 rtb: 12
Without patch:
rtbf: 0 rtb: 2
In summary this patch:
- Increments failed and total test counters once per boost-test.
- Checks for failure cases correctly.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently rcutorture is not able to torture RCU boosting properly. This
is because the rcutorture's boost threads which are doing the torturing
may be throttled due to RT throttling.
This patch makes rcutorture use the right torture technique (unthrottled
rcutorture boost tasks) for torturing RCU so that the test fails
correctly when no boost is available.
Currently this requires accessing sysctl_sched_rt_runtime directly, but
that should be Ok since rcutorture is test code. Such direct access is
also only possible if rcutorture is used as a built-in so make it
conditional on that.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
For RCU implementations supporting multiple types of reader protection,
rcutorture currently randomly selects the combinations of types of
protection for each phase of each reader. The problem with this,
for example, given the four kinds of protection for RCU-sched
(local_irq_disable(), local_bh_disable(), preempt_disable(), and
rcu_read_lock_sched()), the reader will be protected by a single
mechanism only 25% of the time. We really heavier testing of single
read-side mechanisms.
This commit therefore uses only a single mechanism about 60% of the time,
half of the time explicitly and one-eighth of the time by chance.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit enables rcutorture to test whether RCU properly aggregates
different types of read-side critical sections into a larger section
covering the set. It does this by extending an initial read-side
critical section randomly for a random number of extensions. There is
a new rcu_torture_ops field ->extendable that specifies what extensions
are permitted for a given flavor of RCU (for example, SRCU does not
permit any extensions, while RCU-sched permits all types). Note that
if a given operation (for example, local_bh_disable()) extends an RCU
read-side critical section, then rcutorture feels free to also start
and end the critical section with that operation's type of disabling.
Disabling operations include local_bh_disable(), local_irq_disable(),
and preempt_disable(). This commit also adds a new "busted_srcud"
torture type, which verifies rcutorture's ability to detect extensions
of RCU read-side critical sections that are not handled. Gotta test
the test, after all!
Note that it is not legal to invoke local_bh_disable() with interrupts
disabled, and this transition is avoided by overriding the random-number
generator when it wants to call local_bh_disable() while interrupts
are disabled. The code instead leaves both interrupts and bh/softirq
disabled in this case.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit saves a few lines of code by making rcu_torture_timer()
invoke rcu_torture_one_read(), thus completing the consolidation of
code between rcu_torture_timer() and rcu_torture_reader().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, the rcu_torture_timer() function uses a single global
torture_random_state structure protected by a single global lock.
This conflicts to some extent with performance and scalability,
but even more with the goal of consolidating read-side testing
with rcu_torture_reader(). This commit therefore creates a per-CPU
torture_random_state structure for use by rcu_torture_timer() and
eliminates the lock.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Make rcu_torture_timer_rand static, per 0day Test Robot report. ]
Currently, rcu_torture_timer() relies on a lock to guard updates to
n_rcu_torture_timers. Unfortunately, consolidating code with
rcu_torture_reader() will dispense with this lock. This commit
therefore makes n_rcu_torture_timers be an atomic_long_t and uses
atomic_long_inc() to carry out the update.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit extracts the code executed on each pass through the loop
in rcu_torture_reader() into a new rcu_torture_one_read() function.
This new function will also be used by rcu_torture_timer().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Back when RCU had a debugfs interface, there was a test version and
sequence number that allowed associating debugfs data with a particular
test run, where the test run started with modprobe and ended with rmmod,
which was how tests were run back on the old ABAT system within IBM.
But rcutorture testing no longer runs on ABAT, and there is no longer an
RCU debugfs interface, so there is no longer any need for test versions
and sequence numbers.
This commit therefore removes the rcutorture_record_test_transition()
and rcutorture_record_progress() functions, and along with them the
rcutorture_testseq and rcutorture_vernum variables that they update.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Some RCU bugs have been sensitive to the frequency of CPU-hotplug
operations, which have been gradually increased over time. But this
frequency is now at the one-second lower limit that can be specified using
the rcutorture.onoff_interval kernel parameter. This commit therefore
changes the units of rcutorture.onoff_interval from seconds to jiffies,
and also sets the value specified for this kernel parameter in the TREE03
rcutorture scenario to 200, which is 200 milliseconds for HZ=1000.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcutorture RCU priority boosting tests fail even with CONFIG_RCU_BOOST
set because rcutorture's threads run at the same priority as the default
RCU kthreads (RT class with priority of 1).
This patch checks if RCU torture is built into the kernel and if so,
assigns RT priority 1 to the RCU threads, allowing the rcutorture boost
tests to pass.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds the SRCU grace-period number to the rcutorture statistics
printout, which allows it to be compared to the rcutorture "Writer stall
state" message.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The ->dynticks_nmi_nesting field records the nesting depth of both
interrupt and NMI handlers. Because the kernel can enter interrupts
and never leave them (and vice versa) and because NMIs can interrupt
manipulation of the ->dynticks_nmi_nesting field, the values in this
field must be both chosen and maniupated very carefully. As a result,
although the value is zero when the corresponding CPU is executing
neither an interrupt nor an NMI handler, it is 4,611,686,018,427,387,906
on 64-bit systems when there is a single level of interrupt/NMI handling
in progress.
This number is difficult to remember and interpret, so this commit
switches the output to hexadecimal, resulting in the much nicer
0x4000000000000002.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current implementatation of rcu_seq_diff() follows tradition in
providing a rough-and-ready approximation of the number of elapsed grace
periods between the two rcu_seq values. However, this difference is
used to flag RCU-failure "near misses", which can be a valuable debugging
aid, so more exactitude would be an improvement. This commit therefore
improves the accuracy of rcu_seq_diff().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, the range of jiffies_till_{first,next}_fqs are checked and
adjusted on and on in the loop of rcu_gp_kthread on runtime.
However, it's enough to check them only when setting them, not every
time in the loop. So make them handled on a setting time via sysfs.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>