On platforms supporting Intel Turbo Boost Max Technology 3.0, the maximum
turbo frequencies of some cores in a CPU package may be higher than for
the other cores in the same package. In that case, better performance
(and possibly lower energy consumption as well) can be achieved by
making the scheduler prefer to run tasks on the CPUs with higher max
turbo frequencies.
To that end, set up a core priority metric to abstract the core
preferences based on the maximum turbo frequency. In that metric,
the cores with higher maximum turbo frequencies are higher-priority
than the other cores in the same package and that causes the scheduler
to favor them when making load-balancing decisions using the asymmertic
packing approach. At the same time, the priority of SMT threads with a
higher CPU number is reduced so as to avoid scheduling tasks on all of
the threads that belong to a favored core before all of the other cores
have been given a task to run.
The priority metric will be initialized by the P-state driver with the
help of the sched_set_itmt_core_prio() function. The P-state driver
will also determine whether or not ITMT is supported by the platform
and will call sched_set_itmt_support() to indicate that.
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/cd401ccdff88f88c8349314febdc25d51f7c48f7.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
'm_io' is stored in 6 bits so it's a number in the 0-63 range. Static
analysis tools complain that 1 << 63 will wrap so I have changed it to
1ULL << m_io.
This code is over three years old so presumably the bug doesn't happen
very frequently in real life or someone would have complained by now.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Nathan Zimmer <nzimmer@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Fixes: b15cc4a12b ("x86, uv, uv3: Update x2apic Support for SGI UV3")
Link: http://lkml.kernel.org/r/20161123221908.GA23997@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel Xeons from Ivy Bridge onwards support a processor identification
number set in the factory. To the user this is a handy unique number to
identify a particular CPU. Intel can decode this to the fab/production
run to track errors. On systems that have it, include it in the machine
check record. I'm told that this would be helpful for users that run
large data centers with multi-socket servers to keep track of which CPUs
are seeing errors.
Boris:
* Add some clarifying comments and spacing.
* Mask out [63:2] in the disabled-but-not-locked case
* Call the MSR variable "val" for more readability.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20161123114855.njguoaygp3qnbkia@pd.tnic
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Install the callbacks via the state machine and let the core invoke
the callbacks on the already online CPUs.
Move the callbacks to online/offline as there is no point in having the
files around before the cpu is online and until its completely gone.
[ tglx: Move the callbacks to online/offline ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: rt@linuxtronix.de
Link: http://lkml.kernel.org/r/20161117183541.8588-4-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point to have this file around before the cpu is online and no point to
have it around until the cpu is dead. Get rid of the explicit state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
No point to have the sysfs files around before the cpu is online and no
point to have them around until the cpu is dead. Get rid of the explicit
state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
The Unified Memory Controllers (UMCs) on Fam17h log a normalized address
in their MCA_ADDR registers. We need to convert that normalized address
to a system physical address in order to support a few facilities:
1) To offline poisoned pages in DRAM proactively in the deferred error
handler.
2) To print sysaddr and page info for DRAM ECC errors in EDAC.
[ Boris: fixes/cleanups ontop:
* hi_addr_offset = 0 - no need for that branch. Stick it all under the
HiAddrOffsetEn case. It confines hi_addr_offset's declaration too.
* Move variables to the innermost scope they're used at so that we save
on stack and not blow it up immediately on function entry.
* Do not modify *sys_addr prematurely - we want to not exit early and
have modified *sys_addr some, which callers get to see. We either
convert to a sys_addr or we don't do anything. And we signal that with
the retval of the function.
* Rename label out -> out_err - because it is the error path.
* No need to pr_err of the conversion failed case: imagine a
sparsely-populated machine with UMCs which don't have DIMMs. Callers
should look at the retval instead and issue a printk only when really
necessary. No need for useless info in dmesg.
* s/temp_reg/tmp/ and other variable names shortening => shorter code.
* Use BIT() everywhere.
* Make error messages more informative.
* Small build fix for the !CONFIG_X86_MCE_AMD case.
* ... and more minor cleanups.
]
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20161122111133.mjzpvzhf7o7yl2oa@pd.tnic
[ Typo fixes. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
NMI stack dumps are bracketed by the following tags:
<NMI>
...
<EOE>
The ending tag is kind of confusing if you don't already know what "EOE"
means (end of exception). The same ending tag is also used to mark the
end of all other exceptions' stacks. For example:
<#DF>
...
<EOE>
And similarly, "EOI" is used as the ending tag for interrupts:
<IRQ>
...
<EOI>
Change the tags to be more comprehensible by making them symmetrical and
more XML-esque:
<NMI>
...
</NMI>
<#DF>
...
</#DF>
<IRQ>
...
</IRQ>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/180196e3754572540b595bc56b947d43658979a7.1479491159.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So adding thresholding_en et al was a good thing for removing the
per-CPU thresholding callback, i.e., threshold_cpu_callback.
But, in order for it to work and especially that test in
mce_threshold_create_device() so that all thresholding banks get
properly created and not the whole thing to fail with a NULL ptr
dereference at mce_cpu_pre_down() when we offline the CPUs, we need to
set the thresholding_en flag *before* we start creating the devices.
Yap, it failed because thresholding_en wasn't set at the time
we were creating the banks so we didn't create any and then at
mce_cpu_pre_down() -> mce_threshold_remove_device() time, we would blow
up.
And the fix is actually easy: we have thresholding on the system when we
have managed to set the thresholding vector to amd_threshold_interrupt()
earlier in mce_amd_feature_init() while we were picking apart the
thresholding banks and what is set and what not.
So let's do that.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Fixes: 4d7b02d58c ("x86/mcheck: Split threshold_cpu_callback into two callbacks")
Link: http://lkml.kernel.org/r/20161119103402.5227-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Robert O'Callahan reported that after an execve PTRACE_GETREGSET
NT_X86_XSTATE continues to return the pre-exec register values
until the exec'ed task modifies FPU state.
The test code is at:
https://bugzilla.redhat.com/attachment.cgi?id=1164286.
What is happening is fpu__clear() does not properly clear fpstate.
Fix it by doing just that.
Reported-by: Robert O'Callahan <robert@ocallahan.org>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1479402695-6553-1-git-send-email-yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All places which used the TSC_RELIABLE to skip the delayed calibration
have been converted to use the TSC_KNOWN_FREQ flag.
Make the immeditate clocksource registration, which skips the long term
calibration, solely depend on TSC_KNOWN_FREQ.
The TSC_RELIABLE now merily removes the requirement for a watchdog
clocksource.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
reliable and the frequency is known (provided by HW).
On these platforms PIT/HPET is generally not available so calibration won't
work at all and there is no other clocksource to act as a watchdog for the
TSC, so we have no other choice than to trust it.
Set both X86_FEATURE_TSC_KNOWN_FREQ and X86_FEATURE_TSC_RELIABLE flags to
make sure the calibration is skipped and no watchdog is required.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-5-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On Intel GOLDMONT Atom SoC TSC is the only available clocksource, so there
is no way to do software calibration or have a watchdog clocksource for it.
Software calibration is already disabled via the TSC_KNOWN_FREQ flag, but
the watchdog requirement still persists, so such systems cannot switch to
high resolution/nohz mode.
Mark it reliable, so it becomes usable. Hardware teams confirmed that this
is safe on that SoC.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-4-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
CPUs/SoCs with CPUID leaf 0x15 come with a known frequency and will report
the frequency to software via CPUID instruction. This hardware provided
frequency is the "real" frequency of TSC.
Set the X86_FEATURE_TSC_KNOWN_FREQ flag for such systems to skip the
software calibration process.
A 24 hours test on one of the CPUID 0x15 capable platforms was
conducted. PIT calibrated frequency resulted in more than 3 seconds drift
whereas the CPUID determined frequency showed less than 0.5 second
drift.
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-3-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The X86_FEATURE_TSC_RELIABLE flag in Linux kernel implies both reliable
(at runtime) and trustable (at calibration). But reliable running and
trustable calibration independent of each other.
Add a new flag X86_FEATURE_TSC_KNOWN_FREQ, which denotes that the frequency
is known (via MSR/CPUID). This flag is only meant to skip the long term
calibration on systems which have a known frequency.
Add X86_FEATURE_TSC_KNOWN_FREQ to the skip the delayed calibration and
leave X86_FEATURE_TSC_RELIABLE in place.
After converting the existing users of X86_FEATURE_TSC_RELIABLE to use
either both flags or just X86_FEATURE_TSC_KNOWN_FREQ we can seperate the
functionality.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-2-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When show_trace_log_lvl() is called from show_regs(), it completely
fails to dump the stack. This bug was introduced when
show_stack_log_lvl() was removed with the following commit:
0ee1dd9f5e ("x86/dumpstack: Remove raw stack dump")
Previous callers of that function now call show_trace_log_lvl()
directly. That resulted in a subtle change, in that the 'stack'
argument can now be NULL in certain cases.
A NULL 'stack' pointer means that the stack dump should start from the
topmost stack frame unless 'regs' is valid, in which case it should
start from 'regs->sp'.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 0ee1dd9f5e ("x86/dumpstack: Remove raw stack dump")
Link: http://lkml.kernel.org/r/c551842302a9c222d96a14e42e4003f059509f69.1479362652.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The latest binutils are warning about a .fill directive with an explicit
value in a .bss section:
arch/x86/kernel/head_32.S: Assembler messages:
arch/x86/kernel/head_32.S:677: Warning: ignoring fill value in section `.bss..page_aligned'
arch/x86/kernel/head_32.S:679: Warning: ignoring fill value in section `.bss..page_aligned'
This comes from the 'ENTRY()' macro padding the space between the symbols
with 'nop' via:
.align 4,0x90
Open-coding the .globl directive without the padding avoids that warning,
as all the symbols are already page aligned.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161116141726.2013389-1-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a few new AVX512 instruction groups/features for enumeration in
/proc/cpuinfo: AVX512IFMA and AVX512VBMI.
Clear the flags in fpu_xstate_clear_all_cpu_caps().
CPUID.(EAX=7,ECX=0):EBX[bit 21] AVX512IFMA
CPUID.(EAX=7,ECX=0):ECX[bit 1] AVX512VBMI
Detailed information of cpuid bits for the features can be found at
https://bugzilla.kernel.org/show_bug.cgi?id=187891
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: mingo@elte.hu
Link: http://lkml.kernel.org/r/1479327060-18668-1-git-send-email-gayatri.kammela@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some devices on Fam17h can only be accessed through the System Management
Network (SMN). The SMN is accessed by a pair of index/data registers in PCI
config space. Add a pair of functions to read from and write to the SMN.
The Data Fabric on Fam17h allows multiple devices to use the same register
space. The registers of a specific device are accessed indirectly using the
device's DF InstanceId. Currently, we only need to read from these devices,
so only define a read function for now.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-5-git-send-email-Yazen.Ghannam@amd.com
[ Boris: make __amd_smn_rw() even more compact. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
AMD Fam17h uses a Data Fabric component instead of a traditional
Northbridge. However, the DF is similar to a NB in that there is one per
die and it uses PCI config D18Fx registers. So let's reuse the existing
AMD_NB infrastructure for Data Fabrics.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-4-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make all EXPORT_SYMBOL's into EXPORT_SYMBOL_GPL. While we're at it let's
fix some checkpatch warnings.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-3-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Hide amd_northbridges in amd_nb.c so that external callers will have to
use the exported accessor functions.
Also, fix some checkpatch.pl warnings.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Sparse populated CPUID leafs are collected in a software provided leaf to
avoid bloat of the x86_capability array, but there is no way to rebuild the
real leafs (e.g. for KVM CPUID enumeration) other than rereading the CPUID
leaf from the CPU. While this is possible it is problematic as it does not
take software disabled features into account. If a feature is disabled on
the host it should not be exposed to a guest either.
Add get_scattered_cpuid_leaf() which rebuilds the leaf from the scattered
cpuid table information and the active CPU features.
[ tglx: Rewrote changelog ]
Signed-off-by: He Chen <he.chen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Luwei Kang <luwei.kang@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Piotr Luc <Piotr.Luc@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/1478856336-9388-3-git-send-email-he.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
cpuid_regs is defined multiple times as structure and enum. Rename the enum
and move all of it to processor.h so we don't end up with more instances.
Rename the misnomed register enumeration from CR_* to the obvious CPUID_*.
[ tglx: Rewrote changelog ]
Signed-off-by: He Chen <he.chen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Luwei Kang <luwei.kang@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Piotr Luc <Piotr.Luc@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/1478856336-9388-2-git-send-email-he.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The error count field in MCA_MISC does not get reset by hardware when the
threshold has been reached. Software is expected to reset it. Currently,
the threshold limit only gets reset during init or when a user writes to
sysfs.
If the user is not monitoring threshold interrupts and resetting
the limit then the user will only see 1 interrupt when the limit is first
hit. So if, for example, the limit is set to 10 then only 1 interrupt will
be recorded after 10 errors even if 100 errors have occurred. The user may
then assume that only 10 errors have occurred.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1479244433-69267-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The screen_info.lfb_size field is shifted by 16 bits *only* in case of
VBE. This has historical reasons since VBE advertised it similarly.
However, in case of EFI framebuffers, the size is no longer shifted. Fix
the x86 simple-framebuffer setup code to use the correct size in the
non-VBE case.
While at it, avoid variable abbreviations and rename 'len' to 'length',
and use the correct types matching the screen_info definition.
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tom Gundersen <teg@jklm.no>
Link: http://lkml.kernel.org/r/20161115120158.15388-3-dh.herrmann@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The screen_info object was extended to support 64-bit lfb_base addresses
in:
ae2ee627dc ("efifb: Add support for 64-bit frame buffer addresses")
However, the x86 simple-framebuffer setup code never made use of it. Fix
it to properly assemble and verify the lfb_base before advertising
simple-framebuffer devices.
In particular, this means if VIDEO_CAPABILITY_64BIT_BASE is set, the
screen_info->ext_lfb_base field will contain the upper 32bit of the
actual lfb_base. Make sure the address is not 0 (i.e., unset), as well as
does not overflow the physical address type.
Signed-off-by: David Herrmann <dh.herrmann@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tom Gundersen <teg@jklm.no>
Link: http://lkml.kernel.org/r/20161115120158.15388-2-dh.herrmann@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CPU_ONLINE and CPU_DOWN_PREPARE look fully symmetrical and could be move
to the hotplug state machine.
On a failure during registration we have the tear down callback invoked
(mce_cpu_pre_down()) so there should be no timer around and so no need to need
keep notifier installed (this was the reason according to the comment why the
notifier was registered despite of errors).
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-7-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Initially I wanted to remove mcheck_cpu_init() from identify_cpu() and let it
become an independent early hotplug callback. The main problem here was that
the init on the boot CPU may happen too late
(device_initcall_sync(mcheck_init_device)) and nobody wanted to risk receiving
and MCE event at boot time leading to a shutdown (if the MCE feature is not yet
enabled).
Here is attempt two: the timming stays as-is but the ordering of the functions
is changed:
- mcheck_cpu_init() (which is run from identify_cpu()) will setup the timer
struct but won't fire the timer. This is moved to CPU_ONLINE since its
cleanup part is in CPU_DOWN_PREPARE. So if it is okay to stop the timer early
in the shutdown phase, it should be okay to start it late in the bring up phase.
- CPU_DOWN_PREPARE disables the MCE feature flags for !INTEL CPUs in
mce_disable_cpu(). If a failure occures it would be re-enabled on all vendor
CPUs (including Intel where it was not disabled during shutdown). To keep this
working I am moving it to CPU_ONLINE. smp_call_function_single() is dropped
beause the notifier runs nowdays on the target CPU.
- CPU_ONLINE is invoking mce_device_create() + mce_threshold_create_device()
but its cleanup part is in CPU_DEAD (mce_threshold_remove_device() and
mce_device_remove()). In order to keep this symmetrical I am moving the clean
up from CPU_DEAD to CPU_DOWN_PREPARE.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-6-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The threshold_cpu_callback callbacks looks like one of the notifier and
its arguments are almost the same. Split this out and have one ONLINE
and one DEAD callback. This will come handy later once the main code
gets changed to use the callback mechanism.
Also, handle threshold_cpu_callback_online() return value so we don't
continue if the function fails.
Boris Petkov removed the callback pointer and replaced it with proper
functions.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-5-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If we try a CPU down and fail in the middle then we roll back to the
online state. This means we would perform CPU_ONLINE / mce_device_create()
without invoking CPU_DEAD / mce_device_remove() for the cleanup of what was
allocated in CPU_ONLINE.
Be prepared for this and don't allocate the struct if we have it
already.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-4-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the ONLINE callback fails, the driver does not any clean up right
away instead it waits to get to the DEAD stage to do it. Yes, it waits.
Since we don't pass the error code back to the caller, no one knows.
Do the clean up right away so it does not look like a leak.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-3-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>