Use the task_current() function where appropriate.
No functional change.
Signed-off-by: Hui Su <sh_def@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20201030173223.GA52339@rlk
Active balance is triggered for a number of voluntary cases like misfit
or pinned tasks cases but also after that a number of load balance
attempts failed to migrate a task. There is no need to use active load
balance when the group is overloaded because an overloaded state means
that there is at least one waiting task. Nevertheless, the waiting task
is not selected and detached until the threshold becomes higher than its
load. This threshold increases with the number of failed lb (see the
condition if ((load >> env->sd->nr_balance_failed) > env->imbalance) in
detach_tasks()) and the waiting task will end up to be selected after a
number of attempts.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210107103325.30851-4-vincent.guittot@linaro.org
Setting LBF_ALL_PINNED during active load balance is only valid when there
is only 1 running task on the rq otherwise this ends up increasing the
balance interval whereas other tasks could migrate after the next interval
once they become cache-cold as an example.
LBF_ALL_PINNED flag is now always set it by default. It is then cleared
when we find one task that can be pulled when calling detach_tasks() or
during active migration.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210107103325.30851-3-vincent.guittot@linaro.org
Don't waste time checking whether an idle cfs_rq could be the busiest
queue. Furthermore, this can end up selecting a cfs_rq with a high load
but being idle in case of migrate_load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20210107103325.30851-2-vincent.guittot@linaro.org
CPU (root cfs_rq) estimated utilization (util_est) is currently used in
dequeue_task_fair() to drive frequency selection before it is updated.
with:
CPU_util : rq->cfs.avg.util_avg
CPU_util_est : rq->cfs.avg.util_est
CPU_utilization : max(CPU_util, CPU_util_est)
task_util : p->se.avg.util_avg
task_util_est : p->se.avg.util_est
dequeue_task_fair():
/* (1) CPU_util and task_util update + inform schedutil about
CPU_utilization changes */
for_each_sched_entity() /* 2 loops */
(dequeue_entity() ->) update_load_avg() -> cfs_rq_util_change()
-> cpufreq_update_util() ->...-> sugov_update_[shared\|single]
-> sugov_get_util() -> cpu_util_cfs()
/* (2) CPU_util_est and task_util_est update */
util_est_dequeue()
cpu_util_cfs() uses CPU_utilization which could lead to a false (too
high) utilization value for schedutil in task ramp-down or ramp-up
scenarios during task dequeue.
To mitigate the issue split the util_est update (2) into:
(A) CPU_util_est update in util_est_dequeue()
(B) task_util_est update in util_est_update()
Place (A) before (1) and keep (B) where (2) is. The latter is necessary
since (B) relies on task_util update in (1).
Fixes: 7f65ea42eb ("sched/fair: Add util_est on top of PELT")
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/1608283672-18240-1-git-send-email-xuewen.yan94@gmail.com
SCHED_SOFTIRQ is raised to trigger periodic load balancing. When CPU is not
active, CPU should not participate in load balancing.
The scheduler uses nohz.idle_cpus_mask to keep track of the CPUs which can
do idle load balancing. When bringing a CPU up the CPU is added to the mask
when it reaches the active state, but on teardown the CPU stays in the mask
until it goes offline and invokes sched_cpu_dying().
When SCHED_SOFTIRQ is raised on a !active CPU, there might be a pending
softirq when stopping the tick which triggers a warning in NOHZ code. The
SCHED_SOFTIRQ can also be raised by the scheduler tick which has the same
issue.
Therefore remove the CPU from nohz.idle_cpus_mask when it is marked
inactive and also prevent the scheduler_tick() from raising SCHED_SOFTIRQ
after this point.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20201215104400.9435-1-anna-maria@linutronix.de
There is nothing schedutil specific in schedutil_cpu_util(), rename it
to effective_cpu_util(). Also create and expose another wrapper
sched_cpu_util() which can be used by other parts of the kernel, like
thermal core (that will be done in a later commit).
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/db011961fb3bb8bef1c0eda5cd64564637d3ef31.1607400596.git.viresh.kumar@linaro.org
Add support for pointer to mem register spilling, to allow the verifier
to track pointers to valid memory addresses. Such pointers are returned
for example by a successful call of the bpf_ringbuf_reserve helper.
The patch was partially contributed by CyberArk Software, Inc.
Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Suggested-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Gilad Reti <gilad.reti@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20210113053810.13518-1-gilad.reti@gmail.com
One of the users can be built modular:
ERROR: modpost: "irq_check_status_bit" [drivers/perf/arm_spe_pmu.ko] undefined!
Fixes: fdd0296304 ("genirq: Move status flag checks to core")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201227192049.GA195845@roeck-us.net
Add support for directly accessing kernel module variables from BPF programs
using special ldimm64 instructions. This functionality builds upon vmlinux
ksym support, but extends ldimm64 with src_reg=BPF_PSEUDO_BTF_ID to allow
specifying kernel module BTF's FD in insn[1].imm field.
During BPF program load time, verifier will resolve FD to BTF object and will
take reference on BTF object itself and, for module BTFs, corresponding module
as well, to make sure it won't be unloaded from under running BPF program. The
mechanism used is similar to how bpf_prog keeps track of used bpf_maps.
One interesting change is also in how per-CPU variable is determined. The
logic is to find .data..percpu data section in provided BTF, but both vmlinux
and module each have their own .data..percpu entries in BTF. So for module's
case, the search for DATASEC record needs to look at only module's added BTF
types. This is implemented with custom search function.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/bpf/20210112075520.4103414-6-andrii@kernel.org
The error message here is misleading, the argument will be rejected unless
it is a known constant.
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210112123913.2016804-1-jackmanb@google.com
Due to an integer overflow, RTC synchronization now happens every 2s
instead of the intended 11 minutes. Fix this by forcing 64-bit
arithmetic for the sync period calculation.
Annotate the other place which multiplies seconds for consistency as well.
Fixes: c9e6189fb0 ("ntp: Make the RTC synchronization more reliable")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210111103956.290378-1-geert+renesas@glider.be
Some modules don't declare any new types and end up with an empty BTF,
containing only valid BTF header and no types or strings sections. This
currently causes BTF validation error. There is nothing wrong with such BTF,
so fix the issue by allowing module BTFs with no types or strings.
Fixes: 36e68442d1 ("bpf: Load and verify kernel module BTFs")
Reported-by: Christopher William Snowhill <chris@kode54.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210110070341.1380086-1-andrii@kernel.org
When the compiler doesn't feel like inlining, it causes a noinstr
fail:
vmlinux.o: warning: objtool: lock_is_held_type()+0xb: call to lockdep_enabled() leaves .noinstr.text section
Fixes: 4d004099a6 ("lockdep: Fix lockdep recursion")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210106144017.592595176@infradead.org
optlen == 0 indicates that the kernel should ignore BPF buffer
and use the original one from the user. We, however, forget
to free the temporary buffer that we've allocated for BPF.
Fixes: d8fe449a9c ("bpf: Don't return EINVAL from {get,set}sockopt when optlen > PAGE_SIZE")
Reported-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210112162829.775079-1-sdf@google.com
The verifier allows ARG_PTR_TO_BTF_ID helper arguments to be NULL, so
helper implementations need to check this before dereferencing them.
This was already fixed for the socket storage helpers but not for task
and inode.
The issue can be reproduced by attaching an LSM program to
inode_rename hook (called when moving files) which tries to get the
inode of the new file without checking for its nullness and then trying
to move an existing file to a new path:
mv existing_file new_file_does_not_exist
The report including the sample program and the steps for reproducing
the bug:
https://lore.kernel.org/bpf/CANaYP3HWkH91SN=wTNO9FL_2ztHfqcXKX38SSE-JJ2voh+vssw@mail.gmail.com
Fixes: 4cf1bc1f10 ("bpf: Implement task local storage")
Fixes: 8ea636848a ("bpf: Implement bpf_local_storage for inodes")
Reported-by: Gilad Reti <gilad.reti@gmail.com>
Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210112075525.256820-3-kpsingh@kernel.org
The bpf_tracing_prog_attach error path calls bpf_prog_put
on prog, which causes refcount underflow when it's called
from link_create function.
link_create
prog = bpf_prog_get <-- get
...
tracing_bpf_link_attach(prog..
bpf_tracing_prog_attach(prog..
out_put_prog:
bpf_prog_put(prog); <-- put
if (ret < 0)
bpf_prog_put(prog); <-- put
Removing bpf_prog_put call from bpf_tracing_prog_attach
and making sure its callers call it instead.
Fixes: 4a1e7c0c63 ("bpf: Support attaching freplace programs to multiple attach points")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210111191650.1241578-1-jolsa@kernel.org
The way to blacklist notrace functions for kprobes was not using
the proper kconfig which caused some archs (powerpc) from blacklisting
them.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCX/y/kRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qqUNAP9AAvvNt1xEA9XF1fsiYTEZuRZJYh70
kmraYV2r35EPVwD+ORLRFO5eIL8j4SQlome3MuC1iFLak9SKVT5pWOLcDQI=
=AtWi
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fix from Steven Rostedt:
"Blacklist properly on all archs.
The code to blacklist notrace functions for kprobes was not using the
right kconfig option, which caused some archs (powerpc) to possibly
not blacklist them"
* tag 'trace-v5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing/kprobes: Do the notrace functions check without kprobes on ftrace
Enable the notrace function check on the architecture which doesn't
support kprobes on ftrace but support dynamic ftrace. This notrace
function check is not only for the kprobes on ftrace but also
sw-breakpoint based kprobes.
Thus there is no reason to limit this check for the arch which
supports kprobes on ftrace.
This also changes the dependency of Kconfig. Because kprobe event
uses the function tracer's address list for identifying notrace
function, if the CONFIG_DYNAMIC_FTRACE=n, it can not check whether
the target function is notrace or not.
Link: https://lkml.kernel.org/r/20210105065730.2634785-1-naveen.n.rao@linux.vnet.ibm.com
Link: https://lkml.kernel.org/r/161007957862.114704.4512260007555399463.stgit@devnote2
Cc: stable@vger.kernel.org
Fixes: 45408c4f92 ("tracing: kprobes: Prohibit probing on notrace function")
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
copy_siginfo_from_user_any() takes a userspace pointer as second
argument; annotate the parameter type accordingly.
Signed-off-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/r/20201207000252.138564-1-jannh@google.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Here are some small staging driver fixes for 5.11-rc3. Nothing major,
just resolving some reported issues:
- cleanup some remaining mentions of the ION drivers that were
removed in 5.11-rc1
- comedi driver bugfix
- 2 error path memory leak fixes
All have been in linux-next for a while with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCX/sJ2w8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynrXACZASkdHO71XqECukP73ajgRD81LbQAn3igZysN
2gOnWLkJbYSoL1fDD3mx
=Jeh8
-----END PGP SIGNATURE-----
Merge tag 'staging-5.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging
Pull staging driver fixes from Greg KH:
"Here are some small staging driver fixes for 5.11-rc3. Nothing major,
just resolving some reported issues:
- cleanup some remaining mentions of the ION drivers that were
removed in 5.11-rc1
- comedi driver bugfix
- two error path memory leak fixes
All have been in linux-next for a while with no reported issues"
* tag 'staging-5.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging:
staging: ION: remove some references to CONFIG_ION
staging: mt7621-dma: Fix a resource leak in an error handling path
Staging: comedi: Return -EFAULT if copy_to_user() fails
staging: spmi: hisi-spmi-controller: Fix some error handling paths
This program does not use argp (which is a glibcism). Instead include <errno.h>
directly, which was pulled in by <argp.h>.
Signed-off-by: Leah Neukirchen <leah@vuxu.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201216100306.30942-1-leah@vuxu.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Song reported a boot regression in a kvm image with 5.11-rc, and bisected
it down to the below patch. Debugging this issue, turns out that the boot
stalled when a task is waiting on a pipe being released. As we no longer
run task_work from get_signal() unless it's queued with TWA_SIGNAL, the
task goes idle without running the task_work. This prevents ->release()
from being called on the pipe, which another boot task is waiting on.
For now, re-instate the unconditional task_work run from get_signal().
For 5.12, we'll collapse TWA_RESUME and TWA_SIGNAL, as it no longer
makes sense to have a distinction between the two. This will turn
task_work notification into a simple boolean, whether to notify or not.
Fixes: 98b89b649f ("signal: kill JOBCTL_TASK_WORK")
Reported-by: Song Liu <songliubraving@fb.com>
Tested-by: John Stultz <john.stultz@linaro.org>
Tested-by: Douglas Anderson <dianders@chromium.org>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang version 11.0.1
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Alexei Starovoitov says:
====================
pull-request: bpf 2021-01-07
We've added 4 non-merge commits during the last 10 day(s) which contain
a total of 4 files changed, 14 insertions(+), 7 deletions(-).
The main changes are:
1) Fix task_iter bug caused by the merge conflict resolution, from Yonghong.
2) Fix resolve_btfids for multiple type hierarchies, from Jiri.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpftool: Fix compilation failure for net.o with older glibc
tools/resolve_btfids: Warn when having multiple IDs for single type
bpf: Fix a task_iter bug caused by a merge conflict resolution
selftests/bpf: Fix a compile error for BPF_F_BPRM_SECUREEXEC
====================
Link: https://lore.kernel.org/r/20210107221555.64959-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The TREE01 rcutorture scenario intentionally creates confusion as to the
number of available CPUs by specifying the "maxcpus=8 nr_cpus=43" kernel
boot parameters. This can disable rcutorture's load shedding, which
currently uses num_online_cpus(), which would count the extra 35 CPUs.
However, the rcutorture guest OS will be provisioned with only 8 CPUs,
which means that rcutorture will present full load even when all but one
of the original 8 CPUs are offline. This can result in spurious errors
due to extreme overloading of that single remaining CPU.
This commit therefore keeps a separate set of books on the number of
usable online CPUs, so that torture_num_online_cpus() is used for load
shedding instead of num_online_cpus(). Note that initial sizing must
use num_online_cpus() because torture_num_online_cpus() will return
NR_CPUS until shortly after torture_onoff_init() is invoked.
Reported-by: Frederic Weisbecker <frederic@kernel.org>
[ paulmck: Apply feedback from kernel test robot. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit puts all CPUs back online at the end of a torture test,
and also unconditionally puts them online at the beginning of the test,
rather than just in the case of built-in tests. This allows torture tests
to behave in a predictable manner, whether built-in or based on modules.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit provides a test for call_rcu() printing the allocation address
of a double-freed callback by double-freeing a callback allocated via
kmalloc(). However, this commit does not depend on any other commit.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds kernel boot parameters torture.verbose_sleep_frequency
and torture.verbose_sleep_duration, which allow VERBOSE_TOROUT_*() output
to be throttled with periodic sleeps on large systems.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds a short delay for verbose_batched-throttled printk()s
to further decrease console flooding.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit replaces schedule_timeout_uninterruptible() and
schedule_timeout_interruptible() with torture_hrtimeout_us() and
torture_hrtimeout_jiffies() to avoid timer-wheel synchronization.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit saves a few lines of code by making the stutter_wait()
and torture_stutter() functions use torture_hrtimeout_jiffies() and
torture_hrtimeout_us().
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Because rcu_torture_writer() and rcu_torture_fakewriter() predate
hrtimers, they do timer-wheel-decoupled timed waits by using the
timer-wheel-based schedule_timeout_interruptible() functions in
conjunction with a random udelay()-based wait. This latter unnecessarily
burns CPU time, so this commit instead uses torture_hrtimeout_jiffies()
to decouple from the timer wheels without busy-waiting.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds torture_hrtimeout_ns(), torture_hrtimeout_us(),
torture_hrtimeout_ms(), torture_hrtimeout_jiffies(), and
torture_hrtimeout_s(), each of which uses hrtimers to block for a fuzzed
time interval. These functions are intended to be used by the various
torture tests to decouple wakeups from the timer wheel, thus providing
more opportunity for Murphy to insert destructive race conditions.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Full testing of the new SRCU polling API requires that the fake
writers also use it in order to test concurrent calls to all of the API
members, especially start_poll_synchronize_srcu(). This commit makes
rcu_torture_fakewriter() use all available blocking grace-period-wait
primitives available from the RCU flavor under test.
Link: https://lore.kernel.org/rcu/20201112201547.GF3365678@moria.home.lan/
Reported-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Full testing of the new SRCU polling API requires that the fake writers
also use it in order to test concurrent calls to all of the API members,
especially start_poll_synchronize_srcu(). This commit prepares the ground
for this by making the synctype[] and nsynctype variables be static
globals so that the rcu_torture_fakewriter() function can access them.
Initialization of these variables is moved from rcu_torture_writer()
to a new rcu_torture_write_types() function that is invoked from
rcu_torture_init() just before the first writer kthread is spawned.
Link: https://lore.kernel.org/rcu/20201112201547.GF3365678@moria.home.lan/
Reported-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, the rcu_torture_writer() function checks that all required
grace periods elapse during a stutter interval, which is a multi-second
time period during which the test load is removed. However, this check
is suppressed during early boot (that is, before init is spawned) in
order to avoid false positives that otherwise occur due to heavy load
on the single boot CPU.
Unfortunately, this approach is insufficient. It is possible that the
stutter interval might end just as init is spawned, so that early boot
conditions prevailed during almost the entire stutter interval.
This commit therefore takes a snapshot of boot-complete state just
before the stutter interval, thus suppressing the check for failure to
complete grace periods unless the entire stutter interval took place
after early boot.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The refscale test prints enough per-kthread console output to provoke RCU
CPU stall warnings on large systems. This commit therefore allows this
output to be summarized. For example, the refscale.verbose_batched=32
boot parameter would causes only every 32nd line of output to be logged.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
For a new grace period request, the RCU GP kthread transitions through
following states:
a. [RCU_GP_WAIT_GPS] -> [RCU_GP_DONE_GPS]
The RCU_GP_WAIT_GPS state is where the GP kthread waits for a request
for a new GP. Once it receives a request (for example, when a new RCU
callback is queued), the GP kthread transitions to RCU_GP_DONE_GPS.
b. [RCU_GP_DONE_GPS] -> [RCU_GP_ONOFF]
Grace period initialization starts in rcu_gp_init(), which records the
start of new GP in rcu_state.gp_seq and transitions to RCU_GP_ONOFF.
c. [RCU_GP_ONOFF] -> [RCU_GP_INIT]
The purpose of the RCU_GP_ONOFF state is to apply the online/offline
information that was buffered for any CPUs that recently came online or
went offline. This state is maintained in per-leaf rcu_node bitmasks,
with the buffered state in ->qsmaskinitnext and the state for the upcoming
GP in ->qsmaskinit. At the end of this RCU_GP_ONOFF state, each bit in
->qsmaskinit will correspond to a CPU that must pass through a quiescent
state before the upcoming grace period is allowed to complete.
However, a leaf rcu_node structure with an all-zeroes ->qsmaskinit
cannot necessarily be ignored. In preemptible RCU, there might well be
tasks still in RCU read-side critical sections that were first preempted
while running on one of the CPUs managed by this structure. Such tasks
will be queued on this structure's ->blkd_tasks list. Only after this
list fully drains can this leaf rcu_node structure be ignored, and even
then only if none of its CPUs have come back online in the meantime.
Once that happens, the ->qsmaskinit masks further up the tree will be
updated to exclude this leaf rcu_node structure.
Once the ->qsmaskinitnext and ->qsmaskinit fields have been updated
as needed, the GP kthread transitions to RCU_GP_INIT.
d. [RCU_GP_INIT] -> [RCU_GP_WAIT_FQS]
The purpose of the RCU_GP_INIT state is to copy each ->qsmaskinit to
the ->qsmask field within each rcu_node structure. This copying is done
breadth-first from the root to the leaves. Why not just copy directly
from ->qsmaskinitnext to ->qsmask? Because the ->qsmaskinitnext masks
can change in the meantime as additional CPUs come online or go offline.
Such changes would result in inconsistencies in the ->qsmask fields up and
down the tree, which could in turn result in too-short grace periods or
grace-period hangs. These issues are avoided by snapshotting the leaf
rcu_node structures' ->qsmaskinitnext fields into their ->qsmaskinit
counterparts, generating a consistent set of ->qsmaskinit fields
throughout the tree, and only then copying these consistent ->qsmaskinit
fields to their ->qsmask counterparts.
Once this initialization step is complete, the GP kthread transitions
to RCU_GP_WAIT_FQS, where it waits to do a force-quiescent-state scan
on the one hand or for the end of the grace period on the other.
e. [RCU_GP_WAIT_FQS] -> [RCU_GP_DOING_FQS]
The RCU_GP_WAIT_FQS state waits for one of three things: (1) An
explicit request to do a force-quiescent-state scan, (2) The end of
the grace period, or (3) A short interval of time, after which it
will do a force-quiescent-state (FQS) scan. The explicit request can
come from rcutorture or from any CPU that has too many RCU callbacks
queued (see the qhimark kernel parameter and the RCU_GP_FLAG_OVLD
flag). The aforementioned "short period of time" is specified by the
jiffies_till_first_fqs boot parameter for a given grace period's first
FQS scan and by the jiffies_till_next_fqs for later FQS scans.
Either way, once the wait is over, the GP kthread transitions to
RCU_GP_DOING_FQS.
f. [RCU_GP_DOING_FQS] -> [RCU_GP_CLEANUP]
The RCU_GP_DOING_FQS state performs an FQS scan. Each such scan carries
out two functions for any CPU whose bit is still set in its leaf rcu_node
structure's ->qsmask field, that is, for any CPU that has not yet reported
a quiescent state for the current grace period:
i. Report quiescent states on behalf of CPUs that have been observed
to be idle (from an RCU perspective) since the beginning of the
grace period.
ii. If the current grace period is too old, take various actions to
encourage holdout CPUs to pass through quiescent states, including
enlisting the aid of any calls to cond_resched() and might_sleep(),
and even including IPIing the holdout CPUs.
These checks are skipped for any leaf rcu_node structure with a all-zero
->qsmask field, however such structures are subject to RCU priority
boosting if there are tasks on a given structure blocking the current
grace period. The end of the grace period is detected when the root
rcu_node structure's ->qsmask is zero and when there are no longer any
preempted tasks blocking the current grace period. (No, this last check
is not redundant. To see this, consider an rcu_node tree having exactly
one structure that serves as both root and leaf.)
Once the end of the grace period is detected, the GP kthread transitions
to RCU_GP_CLEANUP.
g. [RCU_GP_CLEANUP] -> [RCU_GP_CLEANED]
The RCU_GP_CLEANUP state marks the end of grace period by updating the
rcu_state structure's ->gp_seq field and also all rcu_node structures'
->gp_seq field. As before, the rcu_node tree is traversed in breadth
first order. Once this update is complete, the GP kthread transitions
to the RCU_GP_CLEANED state.
i. [RCU_GP_CLEANED] -> [RCU_GP_INIT]
Once in the RCU_GP_CLEANED state, the GP kthread immediately transitions
into the RCU_GP_INIT state.
j. The role of timers.
If there is at least one idle CPU, and if timers are not firing, the
transition from RCU_GP_DOING_FQS to RCU_GP_CLEANUP will never happen.
Timers can fail to fire for a number of reasons, including issues in
timer configuration, issues in the timer framework, and failure to handle
softirqs (for example, when there is a storm of interrupts). Whatever the
reason, if the timers fail to fire, the GP kthread will never be awakened,
resulting in RCU CPU stall warnings and eventually in OOM.
However, an RCU CPU stall warning has a large number of potential causes,
as documented in Documentation/RCU/stallwarn.rst. This commit therefore
adds analysis to the RCU CPU stall-warning code to emit an additional
message if the cause of the stall is likely to be timer failure.
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Because the need to wake a nocb GP kthread ("rcuog") is sometimes
detected when wakeups cannot be done, these wakeups can be deferred.
The wakeups are then carried out by calls to do_nocb_deferred_wakeup()
at various safe points in the code, including RCU's idle hooks. However,
when a CPU goes offline, it invokes arch_cpu_idle_dead() without invoking
any of RCU's idle hooks.
This commit therefore adds a call to do_nocb_deferred_wakeup() in
rcu_report_dead() in order to handle any deferred wakeups that have been
requested by the outgoing CPU.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit addresses a few code-style nits in callback-offloading
toggling, including one that predates this toggling.
Cc: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit improves debuggability by indicating laying out the order
in which rcuoc kthreads appear in the ->nocb_next_cb_rdp list.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit improves debuggability by indicating which grace period each
batch of nocb callbacks is waiting on and by showing the task state and
last CPU for reach nocb kthread.
[ paulmck: Handle !SMP CB offloading per kernel test robot feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Frederic Weisbecker is adding the ability to change the rcu_nocbs state
of CPUs at runtime, that is, to offload and deoffload their RCU callback
processing without the need to reboot. As the old saying goes, "if it
ain't tested, it don't work", so this commit therefore adds prototype
rcutorture testing for this capability.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>