bianbu-linux-6.6/arch/arm/include/asm/pgtable-3level.h
Rick Edgecombe 2f0584f3f4 mm: Rename arch pte_mkwrite()'s to pte_mkwrite_novma()
The x86 Shadow stack feature includes a new type of memory called shadow
stack. This shadow stack memory has some unusual properties, which requires
some core mm changes to function properly.

One of these unusual properties is that shadow stack memory is writable,
but only in limited ways. These limits are applied via a specific PTE
bit combination. Nevertheless, the memory is writable, and core mm code
will need to apply the writable permissions in the typical paths that
call pte_mkwrite(). The goal is to make pte_mkwrite() take a VMA, so
that the x86 implementation of it can know whether to create regular
writable or shadow stack mappings.

But there are a couple of challenges to this. Modifying the signatures of
each arch pte_mkwrite() implementation would be error prone because some
are generated with macros and would need to be re-implemented. Also, some
pte_mkwrite() callers operate on kernel memory without a VMA.

So this can be done in a three step process. First pte_mkwrite() can be
renamed to pte_mkwrite_novma() in each arch, with a generic pte_mkwrite()
added that just calls pte_mkwrite_novma(). Next callers without a VMA can
be moved to pte_mkwrite_novma(). And lastly, pte_mkwrite() and all callers
can be changed to take/pass a VMA.

Start the process by renaming pte_mkwrite() to pte_mkwrite_novma() and
adding the pte_mkwrite() wrapper in linux/pgtable.h. Apply the same
pattern for pmd_mkwrite(). Since not all archs have a pmd_mkwrite_novma(),
create a new arch config HAS_HUGE_PAGE that can be used to tell if
pmd_mkwrite() should be defined. Otherwise in the !HAS_HUGE_PAGE cases the
compiler would not be able to find pmd_mkwrite_novma().

No functional change.

Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/lkml/CAHk-=wiZjSu7c9sFYZb3q04108stgHff2wfbokGCCgW7riz+8Q@mail.gmail.com/
Link: https://lore.kernel.org/all/20230613001108.3040476-2-rick.p.edgecombe%40intel.com
2023-07-11 14:10:56 -07:00

253 lines
8.1 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* arch/arm/include/asm/pgtable-3level.h
*
* Copyright (C) 2011 ARM Ltd.
* Author: Catalin Marinas <catalin.marinas@arm.com>
*/
#ifndef _ASM_PGTABLE_3LEVEL_H
#define _ASM_PGTABLE_3LEVEL_H
/*
* With LPAE, there are 3 levels of page tables. Each level has 512 entries of
* 8 bytes each, occupying a 4K page. The first level table covers a range of
* 512GB, each entry representing 1GB. Since we are limited to 4GB input
* address range, only 4 entries in the PGD are used.
*
* There are enough spare bits in a page table entry for the kernel specific
* state.
*/
#define PTRS_PER_PTE 512
#define PTRS_PER_PMD 512
#define PTRS_PER_PGD 4
#define PTE_HWTABLE_PTRS (0)
#define PTE_HWTABLE_OFF (0)
#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64))
#define MAX_POSSIBLE_PHYSMEM_BITS 40
/*
* PGDIR_SHIFT determines the size a top-level page table entry can map.
*/
#define PGDIR_SHIFT 30
/*
* PMD_SHIFT determines the size a middle-level page table entry can map.
*/
#define PMD_SHIFT 21
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~((1 << PMD_SHIFT) - 1))
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~((1 << PGDIR_SHIFT) - 1))
/*
* section address mask and size definitions.
*/
#define SECTION_SHIFT 21
#define SECTION_SIZE (1UL << SECTION_SHIFT)
#define SECTION_MASK (~((1 << SECTION_SHIFT) - 1))
#define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE)
/*
* Hugetlb definitions.
*/
#define HPAGE_SHIFT PMD_SHIFT
#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
#define HPAGE_MASK (~(HPAGE_SIZE - 1))
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
/*
* "Linux" PTE definitions for LPAE.
*
* These bits overlap with the hardware bits but the naming is preserved for
* consistency with the classic page table format.
*/
#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
#define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */
#define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
#define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */
#define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */
#define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */
#define L_PTE_DIRTY (_AT(pteval_t, 1) << 55)
#define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56)
#define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */
#define L_PTE_RDONLY (_AT(pteval_t, 1) << 58) /* READ ONLY */
/* We borrow bit 7 to store the exclusive marker in swap PTEs. */
#define L_PTE_SWP_EXCLUSIVE (_AT(pteval_t, 1) << 7)
#define L_PMD_SECT_VALID (_AT(pmdval_t, 1) << 0)
#define L_PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55)
#define L_PMD_SECT_NONE (_AT(pmdval_t, 1) << 57)
#define L_PMD_SECT_RDONLY (_AT(pteval_t, 1) << 58)
/*
* To be used in assembly code with the upper page attributes.
*/
#define L_PTE_XN_HIGH (1 << (54 - 32))
#define L_PTE_DIRTY_HIGH (1 << (55 - 32))
/*
* AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
*/
#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */
#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */
#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */
#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */
#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */
#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */
#define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */
#define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2)
/*
* Software PGD flags.
*/
#define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */
#ifndef __ASSEMBLY__
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!(pud_val(pud) & 2))
#define pud_present(pud) (pud_val(pud))
#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
PMD_TYPE_TABLE)
#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
PMD_TYPE_SECT)
#define pmd_large(pmd) pmd_sect(pmd)
#define pmd_leaf(pmd) pmd_sect(pmd)
#define pud_clear(pudp) \
do { \
*pudp = __pud(0); \
clean_pmd_entry(pudp); \
} while (0)
#define set_pud(pudp, pud) \
do { \
*pudp = pud; \
flush_pmd_entry(pudp); \
} while (0)
static inline pmd_t *pud_pgtable(pud_t pud)
{
return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
}
#define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
#define copy_pmd(pmdpd,pmdps) \
do { \
*pmdpd = *pmdps; \
flush_pmd_entry(pmdpd); \
} while (0)
#define pmd_clear(pmdp) \
do { \
*pmdp = __pmd(0); \
clean_pmd_entry(pmdp); \
} while (0)
/*
* For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
* that are written to a page table but not for ptes created with mk_pte.
*
* In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
* hugetlb_cow, where it is compared with an entry in a page table.
* This comparison test fails erroneously leading ultimately to a memory leak.
*
* To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
* present before running the comparison.
*/
#define __HAVE_ARCH_PTE_SAME
#define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \
: pte_val(pte_a)) \
== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \
: pte_val(pte_b)))
#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
#define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
#define pmd_isset(pmd, val) ((u32)(val) == (val) ? pmd_val(pmd) & (val) \
: !!(pmd_val(pmd) & (val)))
#define pmd_isclear(pmd, val) (!(pmd_val(pmd) & (val)))
#define pmd_present(pmd) (pmd_isset((pmd), L_PMD_SECT_VALID))
#define pmd_young(pmd) (pmd_isset((pmd), PMD_SECT_AF))
#define pte_special(pte) (pte_isset((pte), L_PTE_SPECIAL))
static inline pte_t pte_mkspecial(pte_t pte)
{
pte_val(pte) |= L_PTE_SPECIAL;
return pte;
}
#define pmd_write(pmd) (pmd_isclear((pmd), L_PMD_SECT_RDONLY))
#define pmd_dirty(pmd) (pmd_isset((pmd), L_PMD_SECT_DIRTY))
#define pmd_hugewillfault(pmd) (!pmd_young(pmd) || !pmd_write(pmd))
#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define pmd_trans_huge(pmd) (pmd_val(pmd) && !pmd_table(pmd))
#endif
#define PMD_BIT_FUNC(fn,op) \
static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
PMD_BIT_FUNC(wrprotect, |= L_PMD_SECT_RDONLY);
PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF);
PMD_BIT_FUNC(mkwrite_novma, &= ~L_PMD_SECT_RDONLY);
PMD_BIT_FUNC(mkdirty, |= L_PMD_SECT_DIRTY);
PMD_BIT_FUNC(mkclean, &= ~L_PMD_SECT_DIRTY);
PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF);
#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
#define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
#define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
/* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
#define pmdp_establish generic_pmdp_establish
/* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
static inline pmd_t pmd_mkinvalid(pmd_t pmd)
{
return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
L_PMD_SECT_VALID | L_PMD_SECT_NONE;
pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
return pmd;
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd)
{
BUG_ON(addr >= TASK_SIZE);
/* create a faulting entry if PROT_NONE protected */
if (pmd_val(pmd) & L_PMD_SECT_NONE)
pmd_val(pmd) &= ~L_PMD_SECT_VALID;
if (pmd_write(pmd) && pmd_dirty(pmd))
pmd_val(pmd) &= ~PMD_SECT_AP2;
else
pmd_val(pmd) |= PMD_SECT_AP2;
*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
flush_pmd_entry(pmdp);
}
#endif /* __ASSEMBLY__ */
#endif /* _ASM_PGTABLE_3LEVEL_H */